The Official GNOME 2 Developer's Guide

The Official GNOME 2 Developer's Guide

Table of Contents
The Official GNOME 2 DEVEIOPEI'SGUIAE........uuuuuriuriruiiiriiiiieirirrrerrressrreerrsrreerreereee———————————————err.—" 1

Foreword

LT 00 18 Tt 10 o 1R

£
(OF0 81 V7<) 01110 81 |
o F= 110 0 TR

Programmin@EXAMPIES........ccooiiiii e ————————————— 10

FUNCHONSANAIMACIOSu o eiieiei et e et e e ettt e e e et e e e e e et e e e ee b e e s esaa e eseabaneessebbneeseatansaeees 10
L0 1 0] 111 o PP 1
=L AT A= 11 T 1
POINtEISANAAGAIESSES .. .cevvnieiieit ettt e ettt e et e e et e e e s e tb e e e ea b s e e eeaba s eesea bt esssabassessebanessesnnseesenns 10

1.2 GLib NamiNQCONVENLIONS.......ccceeeiee e i oo nnnanes 11
L 3 BaASIC TV DS et 1
N S T oL L T 17
Y [T Lo YAV =T P2 T 1= 10T PP 13
L4 2QUATKS. .. .cceieeeeetitee et e ettt et e e e e ettt e e e e e e e ettt et eaeeeeeee et t b aeeeeatrerr b aaaaeeererrrrr— 1¢
T O 11T o 17
1.4.4UnicodeandCharacteENCOAINGS. .. .uuvrrrrrrrrrerrirrrrnrrrssresssessssssrsesseesseererererereerrreerrrrerrer 20
S 1T 1T 2
1.4.6MESSAQB OUUING .. vverrerreerreeereeeererereeeeerrerteeettettetttetttttttttttttetttattaattaaaaaataaaaaaaaaaaaaaaaaaaaaaaaaaaans 28
A=Y o]0 [TaTe N aTox (o) 0TSSP 30
1.4.8ExceptionHandlingwith Error REPOIING........coeieeeieeeieee e 31
RS B L2 1= B U o (= 3E

ST 051 1T 0o PP 3r
Y 1 (= SRR 3¢

TR T AN - Y T PPN 4
S O =< 4
SN =T A 1= o <Y 52
1.5.6CreatingHASNTADIES.uuiiiiiiiiiiiiiiiiiiiieiieeirrer e eeeeeesseeseesseeeeseeeeeeeeereeeeeeeeeeetaeetaaeeaeeaaeaaeeees 52
G W= 0 T NS 5¢

(O 7T 0] =Y 2 €1 | o] = o 5
(@ 1Y AV 1= 5
2.1 Object=0rientedProgramMmMINEBASICS.........uuuuuruuruurirnnrinrernrerrrrrrrrrrrrrrr————————————————————————————————.—. 58
2.1.10bjectsasInsStanCce®df CIASSES......ccvvvviiiiiiiiiieciec e 58
A 2] A T=T 1= T o] = TR 59

2.2 DEfINING ClASSES. .. oo e e e i et e e ettt ettt ———————————————————————— bttt b ttararrrrarrrnrres 62
A R (o (U1 (= D<) (T LA T0] LT 62

2.2 2ULIIEY MBCIOS. .. vvvveiiieeiieeeieeeeee ettt ettt ettt ettt ettt e e et e aeaaeeaaaaaaeeas 63

The Official GNOME 2 Developer's Guide

Table of Contents

Chapter 2: GObject
2.2 3Initializing Typeldentifiers..........oooo i ———— 65
2.2.4TheBaseClasS:GODJECL........cuiiiiiiiiiieeeee e, 67
ARG H Y1) 1 0 1o £ 6
A o 0] 0 1= 1= PR 6
A B B LYol oY] T | L ir= 10 0= (= £ RS 70
2.4.2TangentGenericContainerdor ValUES............coooiiiiiiiii i, 72
AT 115 = 1T Yo 1 (0 0 T=T = PP 73
2.5 USINGODECES. ..uvtuvertiriiiiiiierieeeeeeeeeeeeeee e e et e e e e ee e e e et e ettt e et e ettt et e et ettt e et ta et aaeeaeeaaeaaaaaaaeaaaeaaaaaeaaaaeaaaaaaaeaaaeas 7
2.5. 1USINGPIOPEILES. ...coveeeiieeeeeeeeeee e, 78
2.5.2StrongandWeakObJeCtREfEIENCES.........ccooeei i 79
AL 1o 1= 1P 8
2.6.1Defining SignalsandInstallingHANAIELS..............uuuuuiiuuiiiiiiiiiieiieiierierrerr e ————————————————— 81
2.6. 2EMItlING SIGNAIScoiiiiiiiiiieieeeee e, 83
A 1Y =1 £ A= 11T TR 84
2.6.4SIgNAlACCUMUIALONS......cceiiieiiee e, 87

2.6.5AttachingHandlersto Signals...........ooooiiiiiiii e 88
A R ST B <] v Y| TP 8¢

A A = AT ESoY (0] (010 TR 90

A 18] aT<T 01 7= ol TR 9
A A N 1 (< = oL == TR 9€

2.8 FUMNEITOPICS....coi i —— 10z

3.1.1WidgetsandCoONtAINELS.ccoeieee e —————— 104
3.1.2Event=—DriVENPrOgIramMMING........uuuuuerrrrrrunrrnssusssrnsssssssssssssssssssssseessessesereeererrrrr——. 105
3.1.3AN ElementaryEXamMPIE.........oovviiiiiiiiieceee e, 105
3.1.4WidgetFUNdamENTaALS.........ccooiiii bbb ——————r——aaa—rraaaarerarerareaeees 109
G IS 1.Y/ 1Y 1 10 T £ 10¢
G0 o1 nd (0] 1= 1 (1= PRSP PRRPRR 11C

G0 AT = PP 11
I L T T0 [0TSR 11

G TR0t 8 o] 1 1= 11:

CRCT B I1ST o] = A AY o [0 1= £ USSP 112
3.3.1LabelsandPangOMArKUD.uuuuuuuuuuunriunrreurunrerererrresreerrrsrrrerers—..——.—————————————————————. 116
3.3.2ImagesandGDK PiXBUS........cooo i 118
TG ST (010 (ST 7= 5 R 125

3.4 Containe@NdLaYOUtWIAQELS.......cccceviiiiiiiiiieiceeeeeee e, 126
BTt I = 16) (=N 13!

I = o] (=TT 13
3.4.3PanNEANIAUELSccooiiiieeeee e ————— 134
R AN [(= 1o T << 135
G oY A\ o 110 01=T 014 @T0] a] =11 01=] 4= F 136
R M 1ST=Ta1sT] o] [=AVATe [o =) 0 AN A r= L o (=] 010 T=] | P 136
oY 0100 NAYATe fo = PP 137
L B L= 1= 1 =] (AT AT AT [T=) P 141

The Official GNOME 2 Developer's Guide

Table of Contents

Chapter 3: GTK+
3.6. LOPUONMENUS .. .euvvviiieieierieeeeeeeeeeeeeeeeeeeeeeeeereeeeeerteeeteetteetttetttttaattataaataaataaaaaataaaaaaaaaaaaaaaaaaaaes 146
G T2 o 1 Y =0)T U 146
I SRS OFa 101 010 = T0) (=T 148
G T ANe [0S 001=T 0110 0T T= o3 £ PP 149
3.6.5SIAEIWILQELS......cciieeieeeeee e ————— 149
3.6.6SPINBULONWIAGELS.....cci e ———— 150
3.6.7C0I0r ChOOSEMVIAQELS.......cccee e 151
o oT 0] 014 @1 aTo Y0 TST =Y LATATo [0 = PP 152
I SISl 1 1SN T (0N Y oY= = 152
3.6.10CHO0SEIEXAMPIES.uuuuiuuiiuiiiiitiattitttat et eebesseeeseassssssssssssssssssssssassaesssesssneseeeseeeeeees 153
ANV To (ST 6oXTa 0 | B I=ToT0 - (10] 01 157
T N 7= 1121 TP 15¢
I A 1< = 1= L] = TSP 159
BT ARG Y N 0 11T 16(
3.8 TooltipsandKeyboardCONLIOL............oooiiiiii i 160
Gt o 70 0T 111 0T SRR 16(
R e TP =1V 0L 10 @] 1= = L1T0] ¢ FE PP 162
G0 1S T (0] 10T NS 16
3.9.1ScrolledWINAOW PrOPEITIES eebbesbeeeessssessssssssesseesseneeees 166
G700 10 - [o 3RS 16

3.11TreeandLiStWIAQELScooe e ——— 171
3.11.1LiSt ANATIEEAPT REIEIENCE. ... e eiee ettt ettt ettt et e e e e e e e e e 175

I A ST AN A TN YRR 180

3.11.3SEIECHNAROWS.ceiieiiiiii ettt 186

3.11.4AN EXteNdEAEXAMPIE.ccee e ————————— 189
I A = PR 19

I I N Y 1T =Y TR 201

3.12.2TEXEVIEW WIAQELS .. uuuvitivriiiriieiiieteeeesesseeeseeeseeseseseeesseeseeeseeeseeeeereaereeererereaeeereteeeeareeeeeeeeees 216
G0 T =T ol 0] oo PP PPPPPPRPN 21¢€

L0 1 0T 1T 1T TP 22
4.2.11NitiIaliziNg GINOME..........ccciiiiie e e e e e e et e e e e e e e e et r e e e e e e e e e e aaarreeeaaeeas 221

4.2, 2ULILY FUNCHIONS. . .uvvtiiiiiiieiiiieiieeeeee ettt e et e e e e e et e e e e et e e e e e e e e e e e e e e e et e e e e e e e e aaeeaaaeaaaaaaaaaaaaaaaaaaaaaas 223
ARG 1 0 11 1o [T 22¢

Yoo] (= N 22

Z0C T T oo T T 00T PP 22"

4.3.1APPICaAtiONWINAOWS ... 230
LI OT0] 1 (=) 1Y/ =] 11 240

RIS 115 O 0 T T Y= £ 247
R 1 a1 4 =dTo] =) £ 248
I A O] (0T ndTo =] £ 249
F R <1 (oo a1 md o =] = 249

The Official GNOME 2 Developer's Guide

Table of Contents

Chapter 4: The GNOME Libraries
4.3, 9 MAGEPICKETS ittt ae e et e e st e et e ettt et e ettt ettt e st s et b e n st e ntsnnnnnnrnnnnannnnes 250
4.3.10DAtE/ TIMEWIAQELS. .. .uuuruueeiiiriineiitiiititteeeaeeeeraeresersesssssseessessreeeeeeeereeeersrrrrrereeerrertareereeeeeees 250
G 70 I W V4 =1 251
G 10 12 [0 | ST 0 = N 253

4.3.13Ab0Ut (CreditS)WINAOWS.....c.ceiiiieiiieieeeeeeee e 254
4.3 1AGNOME StoCKIEM AADILIONS. .. .cevneeeteeee ettt et e e e et e et e e e e e e e e e e e e e e eeenaes 256

4.3 AODIUIAS. ...ttt e e et e e e e 25¢

G T RS Y S o] 01V F= T = (o [A= o | P 266
N N Tt Y= o 0] oo S PSSR SRP SRR 27(

o N O - 1 (== 1 0 =Y o) AP PPPPPP 271
5.1.2TheWIdgetPalele........ccooe e 272
Fo TR RG] (0] 1= 1 1Y, =0 (0 272
5.1 ATNEWIAQEL TIEE ..cceiieeeeeeeeeeeeee e 278
FoTN ST O [To] oo F- o HS PRSPPI 27¢€
5.2UsSINGthelNterface. ... ————— 279
TN N =TT 1o €1 To [l L PP 282
5.2.2ACCESSINAWIAUELS. ..o ——————— 282
5.2.3Automatically AtAChINGSIGNALS.uuuuuriiiniiiiiiiriiiiiierearrer s rerarerarereesraeereereee. 283
5.2.4ASSOCIALIVEFUNCLIONS.vunieiiiie ettt e e et e e e e e e e et e e s s et e e s et e e s e eabaas 284
5.2.5The CompleteTemperatur@CONVEITEL...........coeeeeiiiee e eee e ee e e eee e ee e anennnes 284
B3 FUMNEITOPICS ...coiiiieeeeee e —— 287

Chapter 6: Additional Software DevelopmentTOOIS........ccooeeiiiiiiei i 288
(TN o Tt o0 1111 USSP RRPRRP 28t

6.1.1Packagd.ists, Versions.andDeSCIPLONS............ccoevviiiiieiiieeeeeeeeeeeeeeeeeeee e, 289

6.1.2DeterminingCompilerandLinker OPtiONS.........cooiieiieiiiiee e 290

6.1.3Usingpkg—configin aMakefile..............ooooiiiiiii i 290
oIV N AT=Y 1N 1O AN (o] o To) PP TRTR 290

(SR K@) /L= TR TPPRPTR 291

B.2.2C0NFIQUIBLAC. . eeveiiiieiiieieeee ettt e e e e e e 292

6.2.3MAKESIlE TEMPIALES. uuuuuiuuriuiiiuutiiuiiuti bttt bbb e beesbesbeeebeesssssssssssessessssssssssssnssessseeseneseeeeeees 294
I | o 1 = M Yo TR 296

(SIS (o [0107: 1r=1a 10 007 1 IR o] =Y £ [=)= T 297
(SIS Y: 101 (0] A 1SY= Vo L= AR 297
6.2.7automakeandStandardPackagdriles. ... 297
LOTVZR < 7= 111 (0o 0] 1) SUu R 297
LS o 0] 10 U NS 297
(I 0 S =TT oL o IF= 0 =) PP 298
L0 I - T (0o 1Y 0 TR o PP 298
LSRG LY/ L=] ATV =10 PR 29¢
6.4 HEIPDOCUMENLS.....ciiiiiiiiiiiieee ettt ettt et e e et e aaaaaaaaeans 300
6.4.1Installing DOCUMENTALION........ccoeeeei e 300

6.5 Supportind ocaleOptionswith gettextandintltool.............ccccevvvviiieii . 301
(SIS0 T 0111 (o To) KT 303

The Official GNOME 2 Developer's Guide

Table of Contents

(O 7T 0] =Y A o] 1 1 PP 30

[10 1] o T OO UUUT PRSPPI 30
A @ A VA1) Y TR 30

A N ATSY U LT d = Yo [T PTRT 30¢

7. 3.5ErmorHANAIINGccoieeeeeeeeeeeeeeeeee e —————— 321
TSR STl AT<T AT T TR 32¢

7.3.7A COMPIETEEXAMPIE. bbbt b e b e e e e e e s essssssssssaesseeeeeeseeeeeeeeeees 325
7.3 8PrefErENCEE UIAEINES. ... cevn ettt ettt ettt ettt e et e et e e e e et e e e e e e eeereenaeeanns 330

LA FUMNEITOPICS....coi i —— 33C

Chapter 8: GROMEVES......ooeeeeeeeeeeee ettt ettt e aeaaaeas 33!
8.1TransparenCWith URIS.........cooo i 331
8.2 Initializing andShuttingDoWN GNOMEVES..........oovviiiiiiii 332
8.3 SYNCHIONOUIACCESSo iiiieeiee e 333
8.3.10pening.Creating.andCIoSINGFIIES..........ccoovviiiiiiii 336
8.3.2Reading Writing, ANASEEKING........uuuuuriririiiiiiiiiiiiirtirrirrrrerrerrrerrrrrrrerre.——————————————————————.. 337
8.3.3ExtractingandChangingFile Information.............ccccoevvvieiiiie 338
8.3.4File MaNAQEMENL.......ccoi i ——————————————— 341
8.4 DIreCtory OPEIAtIONSccieeiiieeee e —— 342
8.4.1DirectoryNaVIQAtiON........ccoee e ——— 342
8.5 ASYNCHIONOUIS/O.....cveiiieiiieeeeee ettt ettt ettt e et et et et et e e e e e e et e e e e e e e et eaaeaaaaaaaaans 344
8.5.10peningandCIOSINGFIlES.ccvviiiiiiieeieeee L 345
8.5.2Readin@andWIItING.cccoiiie e ——— 346
8.5.3RetrievingandSettingFile INfOrmation.............cvvvvviiiii 346
8.5.4MisSCellan@OUIDPEIALIONS.uuuuuuruuuruuriiittiuttetraerererraeresaeeeresrrresrrssessssesssesssssreseseesrerseresenes 347

B.5.5AN EXAMPIB...ceiiiiiiiiiiiiieeeeee ettt 349
ol M =11 =) £ TR 35

Bl FIlE Ty DS e —————————————————————— 36:
8.7.1DeclalNgMIME TYPES....ccc o e 364
8.7.2DeclaringApplication Supportfor aMIME TYPE.......cuuvurirrriieriieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 365

Lo IO IS 11 [od (] = N 366
oo PO =0 11 (o [T IO o PP 366
8.8.2ExtractingPathinformationfrom aURL................oooiiiiiii s 367

8.8.3AccessindJRI Connectionnformation.................ooooe oo 368
e R oI 18 d I IS TP 369

8.9 MISCEIUANEOURILITIES. ... eevneeeee et ettt ettt ettt ettt et e et e et e e et e e e e e e e e e eaeeeeneeeerereeneeernns 369

The Official GNOME 2 Developer's Guide

Table of Contents

Chapter 8: GhomeVFES

8. 1O RESUIEITOICOUES. ... u i eeeetei e et e e e e et e e e sttt e s ea e e s eaba s eeseaaa e s seabaeeseesbaeeenesas 369
8.1 1 POIMADIIIYINOIES. ... eeevieiiieiieeeieeeee ettt et e et et et et et e et e et e e e et e et e e e et e e e e e e e e e e e e e e e eaeeaaaaaaaaaaaaaaaaans 371
8.12File InformationEXampIE.........ccooviiiiii e, 371
TG 1 L= ol 0] oo PP PPPPPPRP 37E
(OfaF=T0) (=Y RS HAVAVA a1=T =R (O N CTo N (0] 0.0 1 1] (= P 376
L@ 1Y AV 1= TR 37
9.1 ReadingDiscussingandCollaborating...........ccooeviiieiiiii e 376
9.0 A REAILIEE, ..ttt e e e e e e e et e — e e rar e et 376
T AL AT LT ALY TR 37¢
9.1.3MaAIING LISES....ccciieeeeee e ——————————— 379
T 1| L TR 38
L T2 1S U (U< TR 38
2 [0= (o PP U OO PPUPPPUPRTN 38(
L T2 o Yo] oY= L 38(
L IR N (=TT 10 | I £ 381
9.2.4Date/TIMEWIAUELS. ..o 381
L T2 Y (o010 T I 1=T 00T T 381
L I T AT oT=)] | (Y= 381
I A 112N T 0 Yo=Y 381
IR 1Y) (=111 10) U 1o SRR SEPPEPRR 381
L IR @0 aTo3 11150 o W 38:
Appendix A: StOCK ItEM REFEIENCEccii i a et e e b e ebes e b ee s s esssessasssessssnssnnnnees 383
Ol I G Y (0o o L (=T 11T 38-
GINOME STOCKITEIMIS. ..cevveteeieeie ettt et e ettt e et e e e et e e e s et e e s ea b s e e seaaa e s sesba e e s e eba e eesebbaeeeeeranses 388
PN o] oL AT D ST €[0T YT) /PP 390
NPT 3¢
TR 3
TR 3
| TR 3
TR 3
LT 3
LT TR 3
= PR 3
Lttt et e e e e ee ettt eeeeeeteeett—a—eeeeeettteeeta . eeeaetttteat i areaeteteer s 3
TR 3
| TR 3
TR 3
| TR 3
[O TR 3
TR 3
L TR 3
S et e eeeeeeeeeeeeeeaeeeeeeeeeteeetteaaeereeeettetestttanietteeetttettttr . —etatttttttt . raeaerernerraa. 3
TR 4
L TR 4
A ettt e e ettt et eeeeeeeeteettsaaaeesesetetesttsaaeteeeettetettttanteeettteeetth e reeetttetattr i aaeaereenerrraaas 4

Vi

The Official GNOME 2 Developer's Guide

Table of Contents

Appendix A: StockItem Reference

N ettt e e eeeeeeeeeeataeaeeeeeeeteettttaaeeeeeetetttttaareeeteteeetttaraeeettrtrtrrraeeaereerrarns 4
K ettt et eeeeeteeeeeeaeeeeeeeeeeeeeettssseseeseseteeestessaeteeeettttettttan..taeetttteat b reeatttrtattb i aaeaerernerrraans 4
Appendix C: BIiblIOQraphV........ccooii i ————— 403
Appendix D: Getting the GNOME DevelopmentSoftware............cccooooeieie e, 405
YT (= 0 T 01T i = o -V = P 405
GARNOIME ..ottt e ettt e e e e e e et et e et e s e e e e et et e e bbb eeeeeseeeesab e eeeeeseeeereaaans 40
[OAY S TR A(
8L 1T U T TR 40
CoNVENtiIONAISOUICEAICRIVES.uu ettt e et e e et e e st e e e s s et s e s seaba e eesabaseessabaeeaes 407
Appendix E: Creative CommonsNonCommercial=ShareAliKeLICENSE..........cccvvvvieiiieiiiiiiiiiiiiiiiiiieeee, 409
NonCommercial=SNarEALIKE.O...........cooeeuuieeiie et e e e e e e et e e e st eeeseabeeeseabasesresrneesenns 409
[T 1= =T 40
LISE Of FQUIES. . uvttttiiiiiiiiitiiee ittt ettt e e e e e eeeeeeeeeeeaeee e e e e et e e e e et e e e e e e e et e e e et e et aa et e e e e eaeaaeeaaaeaaaeaaeaaaaaaaaaaaaaaans 41
Chapter2: GODJECL.....coiiieieeee e 413
(O 0 F= 10 (=1 T I SR UTR SOOI 41]:
Chapterd: The GNOME LIBIAKIES.ccooi i anreanees 413
Chapter5: GladeandLibglade.........cccccoioi bbb e b e e b e s e b essrassssstseassassaeeseneeees 413
Chapter7: GCONS ... ——— 414
ChapterB: GNOMEWVES et e e e e es et e s eesssssssesssssssessesssssssensseeseeesanssneeseeeeeees 414

Vii

The Official GNOME 2 Developer's Guide

by Matthias Warkus
S 7

\n
~—

NO STARCH PRESS
San Francisco
Copyright © 2004 by Matthias Warkus.

All rights reserved. This book was created under the Creative Commons NonCommercial-ShareAlike
License. Please refer_to Appendix E for details.

"5 Printed on recycled paper in the United States of America

12345678910 07060504

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. GNOME
logos are the trademark of GNOME Foundation, Inc. Linux is a registered trademark of Linus Torvalds. Othe
product and company names mentioned herein may be the trademarks of their respective owners. Rather tf
use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

Publisher: William Pollock

Managing Editor: Karol Jurado

Cover and Interior Design: Octopod Studios

Technical Reviewer: Michael Meeks

Copyeditor: Judy Ziajka

Compositor: Wedobooks

Proofreader: Stephanie Provines

Indexer: Brian Ward

The Official GNOME 2 Developer's Guide is an English version of GNOME 2.0: Das Entwickler—-Handbuch,
the German original edition (3—-89842-182-1), published in Germany by Galileo Press (Bonn), copyright ©
2002 by Galileo Press, GmbH. English translation prepared by Brian Ward.

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415-863-9900; fax: 415-863-9950: <info@naostarch.com>; http://www.nostarch.com

The Official GNOME 2 Developer's Guide 1

mailto:info@nostarch.com
http://www.nostarch.com

The Official GNOME 2 Developer's Guide

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has
been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liabilit
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirec
by the information contained in it.

Library of Congress Cataloguing-in—Publication Data

Warkus, Matthias.
The official GNOME 2 developer's guide / Matthias Warkus.
p. cm.

ISBN 1-59327-030-5

1. Graphical user interfaces (Computer systems) 2. Computer programming. 3. Computer software——
Development. I. Title.
QA76.9.U83 W375 2004

005.4'38--dc22
2003023351
TECHNICAL REVIEWER'S NOTE

It was with some surprise and trepidation that | received the task of technical review of a book on the
GNOME platform. As | started to read it, however, it became obvious that the selection of topics to keep the
bulk down, along with some great explanations and examples, make for easy reading and comprehension.
Thus it was, in the end, more of a privilege than a chore.

This book packs a punch greater than its weight by providing useful examples showing good design pattern:
and avoiding extranous distractions or mechanically extracted, exhaustive API listings. It is light on
patronizing screenshots and high on raw content.

Matthias Warkus' diligent research and genius provided the original German text, informed by his long
association with GNOME. Mercifully, Brian Ward stepped forward to translate and update it in an English
version, and did an amazing job. It was a pleasure to work with someone so patient and talented; we owe
Brian a great debt.

And so | come to the end, as you come to the beginning may you enjoy working with GNOME, learning
from the insights and bending them to your purpose. Happy hacking with GNOME, and | look forward to
seeing your name in some ChangelLogs.

Michael Meeks

The Official GNOME 2 Developer's Guide 2

Foreword

The Gnome project began in 1997 as a way to bring free software to the computer desktop. At the time, the
scene looked a bit like this: Microsoft had released Windows 95, which was a very big improvement over
their previous OS, and they were fiercely competing with Netscape for the browser space. Linux and BSD
Unix were increasingly being used to run servers and were the source of most of the server—based innovati
at the time. But at the time, the free software story of desktop software was looking pretty bad. Oh, there we
a few proprietary desktop environments, and the KDE effort, but even KDE was, sadly, built on top of a
proprietary platform.

Gnome was an attempt to produce the missing pieces needed to make the open source Unix (and in particu
Linux) suitable for use on desktop computers. But we had to solve various problems first: We had to create
the basic desktop software as well as a set of desktop-related services (like printing and configuration) as w
as a common development platform to factorize the common tasks performed by these applications.

The Gnome project spans many domains, from the development platform to the actual visual components tt
make up the desktop. It includes the design process, implementation, translation, documentation, architectir
bug fixing, and managing the release and quality assurance processes. But unlike the traditional software
development process, Gnome has been developed by individuals and companies distributed around the wo
on a non-stop basis. This process of distributed software development has posed numerous challenges, bu
brings with it plenty of benefits: Ghome is multi—cultural, and benefits from the input of many experts in
various fields worldwide.

Today Gnome is one of the most used desktops in the world. In fact, the end of 2003 saw very large
deployments of the Ghome desktop in Spain, Brazil, China, and the United Kingdom. And Ghome as a
desktop is continously evolving. It continues to improve and to incorporate the best usability ideas from the
industry, and has also proven to be a vessel for distributing innovative applications.

In 2000, the various developers and companies involved in the Ghome project launched an initiative to crea
a Gnome Foundation. The Foundation was to be responsible for engineering releases, integrating new
components into Ghome, establishing partnerships with other projects, and liaising with other nonprofits,
corporations, governments, developers, and users. Gnome 2.0 was the first release of the desktop under th
umbrella of the Ghome Foundation. It featured an improved user interface and an improved development
platform. Since the release of Ghome 2.0, the team has been able to deliver reliable releases of the platforn
every six months, with the schedule allowing for the code to be properly internationalized and tested before
each release.

Gnome is unique because, from the very beginning, it has had a strong focus on creating a development
platform to provide services for applications; services that developers typically expect to find on their
operating system. The Official Gnome 2 Developer's Guide will show you how to use this platform. Matthias
Warkus wrote this book based on the new Gnome 2 platform, and it has been available in German for quite
some time. | am very happy to see this book translated into English, thanks to the efforts of Brian Ward.
Michael Meeks performed the technical review of the translation for accuracy, and updated the book as
necessary to reflect the latest changes in Ghome.

Since the early days of the Ghome project, we have understood the need for a programming language that

would help programmers to be more productive. Thus, the Gnome APIls were designed to accommodate the
needs of the various programming languages. The information in this book is focused on the C API, but it is
equally applicable to the various language bindings included with Gnome: C++, Java, Perl, Python, and the

.NET bindings (which include C# and Visual Basic). This language—neutral policy is one of the great

Foreword 3

The Official GNOME 2 Developer's Guide

strengths of the Gnome APIs, because they accommodate system programmers as well as developers who
choose to use the more agile programming systems. In fact, all of the GUI code | write these days is done ir
C# using the concepts explained in this book, and all of the new GUI software that we are producing is bein
built on the C#/Gnome combination. Once you become familiar with the development APIs, | suggest that
you read the Gnome "Human Interface Guidelines" document published by the Foundation. This document
summarizes the conventions and policies used when developing for the desktop to create applications that
easy to use, that reuse the Gnome framework, and that are visually integrated with the rest of the desktop.

Miguel de Icaza
Gnome Project Founder

Foreword 4

Preface to the Original Edition

"Why are you writing a developer's guide to GNOME 27 | thought you were a translator . . ."

A somewhat stunned colleague asked me something like this at the GNOME Project booth as the plans for
this book began to take shape at LinuxTag (Linux Day) 2001 in Stuttgart. And because | had the insolence t
undertake this task without any actual extensive GNOME programming experience, | should probably prepa
for a series of sleepless nights.

When | started fooling around with GNOME in 1998 (around version 0.30), | don't think that | would have
dreamed it would go this far. Apart from curiosity, the main reason that | started using GNOME was that it
was the only modern user interface that the slightly outdated hardware on my Linux system could deal with,
only barely.

One thing led to another: Sometime or other, | decided to subscribe to several mailing lists, translated
GNOME software into German, spent day upon day compiling the latest GNOME source trees, demonstrate
GNOME at trade shows, did some talks about it, and wrote articles. The one thing that | hadn't done yet was
to program GNOME, not just because | didn't have the time, but because | was somewhat lacking in
inspiration.

Therefore, writing a comprehensive GNOME 2 programming guide was quite a daring undertaking, and it
would have never gotten to this point without the support of Judith Stevens-Lemoine. Judith deserves my
special thanks | couldn't have hoped for a better editor. Without her, this book wouldn't exist, and the
compromise of content breadth versus limited space and time wouldn't have come out so well.

The same thanks go to Jens "trigster" Finke, Christian "chrisime" Meyer, and Thomas "chip" Ziehmer, who
reviewed the book for correctness and clarity. | have them and a large number of other members in the
GNOME community to thank for motivation; their expressed desire for this book ensures that it indeed has
the practical value that | had strived for.

I hope that you share this view. If you have some constructive criticism or ideas for revisions, feel free to set
them directly to me.

And now I'd like to use this opportunity to make some further remarks and thanks:

The names in Chapter 2 come from a Usenet posting by Peter Bouillon. Many thanks to him and the founde
of Netdigest (de.alt.netdigest) who have archived his posts. [tr.ed.: The terms in the German edition are Flip
and Qwurxel; these have been "translated" into Flipper and Slop.]

I have my sister (Iris) to thank for many more things than are possible to mention in this preface.

Tuomas "Tigert" Kuosmanen, GNOME's "head artist," gets thanks not just for his wonderful images, but alsc
for providing me with several special versions of the GNOME logo.

Jeff "jdub" Waugh has not been the release coordinator of GNOME 2, but also saved me a lot of time with h
GARNOME system that allows an entire GNOME build with just a few commands. Before this, a hew systen
could take days to build, and | was happy to invest the time that would otherwise be spent installing GNOME
in writing.

Preface to the Original Edition 5

The Official GNOME 2 Developer's Guide

This book's work was also supported by music from (among others): The Alan Parsons Project, Amorphis,
Antrum Nequam, Tori Amos, Ayreon, Johann Sebastian Bach, Ludwig von Beethoven, Black Sabbath, Blue
Oyster Cult, Bluescream, Eric Burdon and The Animals, Eric Burdon and The New Animals, Eric Burdon an
War, B. Where, Miles Davis, DDT, Deep Purple, Derek and The Dominos, Dio, The Doobie Brothers, The
Doors, Ekseption, Duke Ellington, Emerson Lake and Palmer, Peter Frampton, Herbie Hancock, Iron
Butterfly, J.B.O., Maria Jodo, Billy Joel, Judas Priest, Led Zeppelin, Bob Marley, Massive Attack, John
Mayall and The Blues Breakers, Meat Loaf, John Miles, The Modern Jazz Quartet, Thelonious Monk, Carl
Orff, Pink Floyd, Queen, Sergei Rachmaninov, Seal, Arnold Schénberg, Simon and Garfunkel, Paul Simon,
Jimmy Smith, The Specker Davis Group, Star One, The Steve Miller Band, Toto, Uriah Heep, Van Halen, ar
Hannes Wader and let's not forget the people who have shown that you really can find friends of music in
the Internet: the wonderful collection of musicians in de.rec.music.machen.

XXX percent of the proceeds from this book go to the GNOME Foundation.
I hope that you have as much fun working with this book as | had writing it.
Matthias "mawa" Warkus

<mawarkus@gnome.org>
Korborn, July 2001-October 2002

Preface to the Original Edition 6

mailto:mawarkus@gnome.org

Preface to the English Edition

To many, GNOME seems like an American phenomenon, even though it's pointless to assign this sort of lat
to a free software project. You could write to your heart's content about how the project came about and
which project outgrowths produce the various pieces that make up GNOME. At the same time, you encount
people who feel that they need to view company acquisitions and other developments in free software not
only as conflicts, but also in terms of their "nationality" a point of view that's so senseless that it would be a
waste of time to explain any further. Free software makes the best sense when thought of as international, ¢
with that, transatlantic. This book, written by a German and now appearing in America, shows that GNOME
is no exception. That's perhaps the biggest reason that I'm thrilled about this translation.

You might notice that this is a good translation. That could have something to do with Brian Ward being a
good translator so good that | couldn't find one single thing to fix in his translation. In addition, working
with Karol Jurado (managing editor of No Starch Press) went very smoothly.

I'm especially delighted to have the service of GNOME guru Michael Meeks as a technical reviewer. Anyone
who knows GNOME a little from the inside can understand why. With the help of Michael and Brian, this
book not only has been translated, but also revised and improved.

To the petty politickers mentioned earlier, I'd recommend that instead of partaking in silly discussions, you
use your time to become GNOME programmers, because (among other things), | still don't have the time to
be a full-fledged GNOME programmer.

| wish the readers of this edition just as much fun as | did to the readers of the original German version. Eve
though there's probably some sort of ocean between us, we might just come across each other one day.

Matthias "mawa" Warkus

<mawarkus@gnome.org>
Marburg, November 2003

Preface to the English Edition 7

mailto:mawarkus@gnome.org

Introduction

You need some programming experience to take advantage of this book. If you were starting from scratch, t
book would require an especially large and sturdy binding to contain all of the pages, and you probably
wouldn't be able to lift it.

To be more specific, you should have:

 Firm programming experience in C, including pointers, dynamically allocated data structures, and
pointers to functions. You should also be familiar with enumeration types and bit fields [Kernighan].

« A solid grasp of pointers to pointers (** types), where to use them, and how to extract and use the
address of a pointer.

» Understanding of C macros and the C preprocessor.

« Fundamental understanding of Unix: processes, libraries, search paths, and so on.

« Practical Unix experience, including how to use a text editor, shell scripts, and make.
« Basic familiarity with GNOME (as a user). You should know how GNOME 2.0 applications look and
feel and how to work with graphical user elements such as control panels and dialog boxes.

In addition, some understanding of GUI programming is helpful. Knowledge of what callbacks (event
handlers) are and how they work goes a long way. This isn't absolutely necessary, but you'll probably need
little more time to work through the book if you have never touched a user—interface API.

You do not need experience in:

e GTK+ or GNOME programming.

* Programming languages other than C.

» Object-oriented programming.

» Model-View-Controller (MVC) programming.

Limits

This book's content lies somewhere between a tutorial and a reference. To keep it from becoming too bloate
some restrictions were imposed:

« This book does not contain a complete API reference. In particular, you won't find seldom-used or
obsolete functions and classes here.

 This book omits certain implementation details, such as data structures and libraries and functions tt
are purely internal or pertain only to further development of GNOME libraries. If you are interested in
this sort of thing, have a look_at Appendix D for information on how to obtain the GNOME source
code. This software is distributed as open source under GNU LGPL [FSF 1999] and GPL [FSF 1991

» To make more space for the most frequently used classes and functions, this book includes some
reference material for obscure APl components, but no examples.

* You won't see how to go from an idea to a complete, robust, elegant GUI application in excruciating
detail. This is a book on GNOME as a tool for building applications; its goal is not software
engineering. The programming examples are meant to demonstrate classes and functions, not full
applications.

Introduction 8

The Official GNOME 2 Developer's Guide
Conventions

The typographical style of this book is similar to that of other programming books:

« File, library, GConf keys, and URLSs, such as gobject.h, /apps/gconfdemo/ pictures_as_words, and

http://www.gnome.org/ are set in italic.
» Glossary terms appear in boldface italic at first mention.

« Menu commands are in boldface, separated by an angle bracket (>): for example, File > Open or
Help > Info.
 C code, shell commands, function names, and variable names are in a monospaced typeface:

GtkWidget *foo = gtk_widget_new();
Note that you can distinguish a function by its trailing parentheses:

g_timer_new()

 Class names like GtkWidget are set in boldface.

» Object names also appear in monospace. Therefore, you might see phrases like "The object gconf
belongs to the GConfClient class" and "gconf is a GConfClient." However, you will frequently see "a
GConfClient object" used to refer to an indefinite object of a class.

» Parameters such_as object in G_OBJECT(object) are in monospaced italic.

 Properties and signals such as changed, set-size, and shadow-type appear in monospaced bold.

» Pseudocode such as << save humanity >> is monospaced between two sets of angle brackets. You
will often see << ... >>. This means that there's no reason to say what this pseudocode does, becaus
it's either obvious or undefined.

» References to literature such as [Wirth] and [Pennington] appear in brackets. Appendix C is a
bibliography.

Note There are note indicators in the margin to denote material that is particularly helpful or important.

Warning Likewise, if you see a warning in the margin, you should read the material carefully, or there'
a good chance that you might shoot yourself in the foot.

Because the text in this book has a maximum width of 83 monospaced characters, all programs and file

listings that exceed this limit must be split. A backslash (\) at the end of a line indicates that the next line is a

continuation. Unfortunately, not all C compilers understand line continuation in the same way, and some

programs that work with the other file listings in this book don't support it at all. You should always consider

split lines to be a single line, other than notable exceptions such as Makefiles and shell scripts.

Platform

GTK+ and GNOME have gradually become platform independent. In spite of this, the primary working
environment for this book is Unix. When there is a difference among Unix systems, this book leans toward a
GNU system with a Linux kernel (otherwise known as GNU/Linux or just Linux). In general, this book tries
to avoid operating system dependencies, but in the interest of space and clarity, it leans toward the GNU
platform because it has the overwhelming majority of GNOME installations.

Conventions 9

http://www.gnome.org/

The Official GNOME 2 Developer's Guide

Programming Examples

The examples in this book are quite important. At the very least, you should skim them, acquiring a good ide
of what they do and a fundamental understanding of how they work. This text presents many concepts that
seem somewhat awkward in words alone but are clear when presented in conjunction with an example.

In the continuing effort to keep this book's page count down, many of the examples here are not complete
valid C programs. The first few chapters contain primarily short multiline fragments, demonstrating function
calls described in the surrounding text. There are many full programs within the text, though, and you can ge

them at_http://www.nostarch.com/gnome.htm.
If you come across a variable that doesn't seem to have a declaration and you don't know its type or

significance, take a look at the previous pages; you should find it there. For instance, the listings
accompanying the description of GList don't always contain the line

GList *list;
When a preprocessor directive such as #include appears just before some function calls, then you must use

directive somewhere at the beginning of your source code. This is similar to the style of the online Unix
programming manual; run man gethostbyname and look at the SYNOPSIS section.

Functions and Macros

Remember that you can only call a function. A macro application often looks very similar to a function call,
but it is an expansion that takes place before the compiler converts the source into object code. However, in
most APIs, it isn't often clear which elements are functions and which are macros, so this text doesn't draw :
strict line between the two.

Counting

In C, indices for arrays and fields start at 0. To avoid errors, this book carries this convention to other areas,
but especially to lists. One notable example is GLib's list element indexing.

Pathnames

The system for pathnames in this book follows the automake rules. The name $(prefix) refers to the
installation prefix for your GNOME installation (for example, /usr or /opt/gnome?2).

Pointers and Addresses

GTK+ and GNOME use pointers to pointers extensively. This book sometimes refers to a pointer to a pointe
as the address of a pointer, because you normally use parameters such as &ptr, where ptr is a pointer.

Programming Examples 10

http://www.nostarch.com/gnome.htm

Chapter 1: GLib

1.1 Introduction

The letter G is ubiquitous in the world of open—source software; it stands for GNU (Richard Stallman's
"GNU's Not Unix"). You'll see it throughout this book in names like GTK+, GLib, GObject, and GNOME, as
well as in many other software packages such as Ghostscript and gcc.

To understand the later chapters in this book, you need to learn about a fundamental library called GLib
(libglib—2.0). It provides basic data structures and utility functions for the GTK+ widget set and GNOME
applications in general. This chapter deals with GLib's architecture and introduces the API. You'll see GLib's
object system (GObject)_in Chapter 2.

You can't really avoid GLib when using GNOME and GTK+. Other libraries such as ORBIt use GLib, and
many don't depend on any other libraries. The abstractions and utilities that GLib provides are handy for
nearly any programming task and simplify ports to other platforms.

This chapter contains no graphical code. It is a concise, point—by—point guide to the most important GLib
functions and data structures. You may find this material a bit dry, so you can go directly to Chapter 3 to get
started with GTK+. However, you may find yourself regularly looking back to these first two chapters for
reference.

1.2 GLib Naming Conventions

As with many other libraries, GLib has naming rules for consistency and readability:

« Function names are always in lowercase, with an underscore between each part of the name:
g_timer_new(), g_list_append(). In addition, all function names begin with g_.

« All functions in a library start with a common prefix. In GLib, this prefix is g_.

» Type names contain no underscores, and each component inside starts with a capital letter: GTimer
GList. The names start with G. The notable exceptions to these rules are the elementary types in
Section 1.3.

« If a function operates primarily on a certain type, the prefix of this function corresponds to the type
name. For example, the g_timer_* functions work with the GTimer type, and g_list_* functions go
with GList.

It sounds more complicated than it is.

1.3 Basic Types

To get started with GLib, you should adjust to its elementary types. You might wonder why it is important to
use guchar instead of unsigned char. There aren't any real differences as long as you stay on the same
platform. However, if you decide that you want to import, export, and interface your software between, say,
Windows and Unix, then you'll be thankful that GLib can abstract the basic data types for you.

Chapter 1: GLib 11

The Official GNOME 2 Developer's Guide

For example, if you want to do something unpleasant such as define an unsigned integer variable that is
exactly 16 bits wide on any potential platform, things can start to look a little ugly in C. Fortunately, GLib
takes care of this so that you don't have to get your hands too dirty. The basic types are listed in the table ot
the opposite page.

To use GLib and all of its types, include the glib.h header file in your source code:

#include <glib.h>

The gpointer and gconstpointer types appear frequently when interacting with the GLib data structures,
because they are untyped pointers to memory. In GLib, functions that use these pointers take responsibility
for verifying the type, not the programmer or the compiler. These can be especially handy for type abstractic
in callback functions and equality operators used in sorting and iteration.

The GLib header file defines the constants TRUE and FALSE for the gboolean type. However, it's bad style
to use equivalence operators with these constants; that is, use if (my_gboolean), not if (my_gboolean ==
TRUE).

GLib Type |Corresponding Type in C
gchar char

ugchar unsigned char

gint int

guint unsigned int

gshort short

gushort unsigned short

glong long

gulong unsigned long

gfloat float

gdouble double

gint8 int, 8 bits wide

guint8 unsigned int, 8 bits wide
gintl6 int, 16 bits wide

guintl6 unsigned int, 16 bits wide
gint32 int, 32 bits wide

guint32 unsigned int, 32 bits wide
gint64 int, 64 bits wide

guint64 unsigned int, 64 bits wide
gpointer void *, untyped pointer
gconstpointerconst void *, constant untyped pointef
gboolean Boolean value, either TRUE or FALSE

1.4 Basic Utilities

GLib has a number of utilities that simplify everyday interaction with the C programming language and the
system that your program runs on. For functions dealing with GLib data structures, see Section 1.5.

1.4 Basic Utilities 12

The Official GNOME 2 Developer's Guide

1.4.1 Memory Management

If you employ GLib's memory management routines, you can save yourself some headaches GLib provide
additional error checking and diagnostic functionality. As in C, there isn't much to learn; the table on the nex
page provides a reference for the C programmer.

Instead of malloc(), realloc, and free(), you can use g_malloc(), g_realloc(), and g_free(); they operate in an
identical fashion. To allocate memory and zero out any previous content, use g_mallocO(). Note that its synt
is like malloc, not calloc().

The advantage of these functions over those in the standard C library is the built—in error handling. If a
problem occurs during runtime, g_error() can step in to examine it (see Section 1.4.6). With the usual C
library, you might be faced with a core dump if you fail to check the return codes carefully every time you
allocate memory.

GLib Function Corresponding C Function

gpointer g_malloc(gulong n_bytes) void *malloc(size_t size) with error handling

gpointer g_mallocO(gulong n_bytes) like malloc(), but initializes memory as in calloc()

gpointer g_try _malloc(gulong n_bytes) like malloc() without error checking

gpointer g_realloc(gpointer mem, gulong n_bytes)void *realloc(void *ptr, size_t size) with error
checking

gpointer g_try_realloc(gpointer mem, gulong realloc() without error checking

n_bytes)

void g_free(gpointer mem) void free(void *ptr)

NoteIf you have some special reason for inspecting the return code by hand, you can do so with the GLib
functions g_try_malloc() and g_try_realloc(), which work just like their C counterparts that is, they
return NULL upon failure. You could use this in a place where the allocated memory isn't critical (for
example, in extra buffers meant to improve performance) or when you're running some sort of probe.

Naturally, if you choose to override GLib's protection mechanism, you need to know exactly what you're

doing. For most applications, the normal functions like g_malloc() can save you a lot of code, frustration, ant

time.

Normal practice dictates that you do not specify the requested memory block size for functions like malloc()
and g_malloc() as a concrete number. Instead, you make the compiler or runtime system figure it out from a
type size multiple, usually with sizeof(). To make the data types agree, you must apply a cast to the malloc()
return value. All of this makes for a mess of parentheses and stars, so GLib offers the macros g_new(),
g_new0(), and g_renew(), as demonstrated in this code fragment:

typedef struct _footype footype;
footype *my_data;

/* Allocate space for three footype structures (long version) */
my_data = (footype *) g_malloc(sizeof(footype)*3);

/* The abbreviated version using g_new */
my_data = g_new(footype, 3);

/* To initialize the memory to 0, use g_new0 */
my_data = g_newO(footype, 3);

1.4.1 Memory Management 13

The Official GNOME 2 Developer's Guide

/* Expand this block of memory to four structures (long version) */
my_data = (footype *) g_realloc(my_data, sizeof(footype)*4);

/* Shorter version */
my_data = g_renew(my_data, 4);

You can clearly see how g_new() abbreviates g_malloc() and g_renew() is a short form of g_recalloc() in thi
fragment. In addition, g_newO() is a brief form for invoking g_mallocO().

WarningRemember that you need to use a type with g_new(), just as you would with sizeof(). Something lik
b =g _new(a, 1) (where a is a variable) yields a compilation error. It will be an ugly error because
g_new() is a macro.

Memory Chunks

GUI applications tend to repeatedly allocate memory in identically sized blocks (atoms). Furthermore, there
are relatively few kinds of atoms. GLib uses a mechanism called memory chunks (GMemChunk) to provide
applications with atoms. A chunk consists of several atoms; its block size is the total byte length of the
component atoms. Therefore, the block size must be a multiple of the atom size.

Here is an example of how to use g_mem_chunk_new() to request a new memory chunk:

GMemChunk my_chunk;

my_chunk = g_mem_chunk_new("My Chunk", [* name */
42, [* atom size */
42*16, * block size */

G_ALLOC_AND_FREE); /* access mode */

The g_mem_chunk_new() function has four arguments: a name for the memory chunk that you can use for
diagnostics, the size of each atom (here, 42), the overall block size (it's easiest to write this as a multiple of 1
atom size), and the access mode (see below). The return value is a pointer to the new GMemChunk structu

Note A GMemChunk isn't a data structure. It's a management system for memory fragments that can contai
data structures.

The access mode (or type) gives you control over how to create and deallocate the atoms. There are two
modes:

« G_ALLOC_AND_FREE allows you to return individual atoms to the memaory pool at any time.
« G_ALLOC_ONLY permits deallocation of atoms only when you dispose of the entire memory chunk.
This mode is more efficient than G_ALLOC_AND_FREE.

Here is how an example of how to allocate and free memory atoms in the chunk created in the preceding
example:

gchar *data[50000];
gint i;

/* allocate 40,000 atoms */
for(i = 0; i < 40000; i++)

data[i] = g_mem_chunk_alloc(my_chunk);

}

1.4.1 Memory Management 14

The Official GNOME 2 Developer's Guide

/* allocate 10,000 more atoms and initialize them */
for(i = 40000; i < 50000; i++)
{

data[i] = g_mem_chunk_allocO(my_chunk);

}

/* free one atom */
g_mem_chunk_free(my_chunk, data[42]);

Here, g_mem_chunk_alloc() and g_mem_chunk_allocO() make the individual atoms available. They work
like g_malloc() and g_mallocO(), returning a pointer to the atom's memory, but they take a GMemChunk
structure as the argument instead of a size specification. The g_mem_chunk_free() function takes a pointer
an individual atom, returning it to the unallocated pool of memory.

Warning Remember that you can use g_mem_chunk_free() only on atoms of a memory
chunk that was created with the G_ALLOC_AND_FREE access mode. In addition,
never use g_free() to free an atom this will inevitably lead to a segmentation fault,
because one of the memory chunk deallocation functions will cause a double free().

Several functions clean and dispose of atoms in memory chunks, working on an entire memory chunk at on
Here is an example of how to use these functions:

/* free up any unused atoms */
g_mem_chunk_clean(my_chunk);

/* free all unused atoms in all memory chunks */
g_blow_chunks();

/* deallocate all atoms in a chunk */
g_mem_chunk_reset(my_chunk);

/* deallocate a memory chunk */
g_mem_chunk_destroy(my_chunk);

* g_mem_chunk_clean(chunk) examines chunk and deallocates any unused memory. This procedure
gives you some manual control over the underlying memory management. The g_mem_chunk_free(
function doesn't necessarily deallocate an atom's memory immediately; GLib does this when
convenient or necessary. g_mem_chunk_clean() forces immediate deallocation.

e g_blow_chunks() runs g_mem_chunk_clean() on all outstanding memory chunks in your program.

* g_mem_chunk_reset(chunk) frees all atoms in chunk, including those in use. Be careful when using
this function, because you might have a few lingering pointers to previously allocated atoms.

* g_mem_chunk_destroy(chunk) deallocates all atoms of chunk and the memory chunk itself.

As is the case for general memory management, GLib provides some macros that can save you some typin

typedef struct _footype footype;
GMemChunk *pile_of_mem;
footype *foo;

/* create a memory chunk with space for 128 footype atoms */
pile_of_mem = g_mem_chunk_new("A pile of memory",
sizeof(footype),
sizeof(footype)*128,
G_ALLOC_AND_FREE);

1.4.1 Memory Management 15

The Official GNOME 2 Developer's Guide

[* the same thing, with g_mem_chunk_create */
/* the name will be "footype mem chunks (128)" */
pile_of_mem = g_mem_chunk_create(footype, 128, G_ALLOC_AND_FREE);

/* allocate an atom */
foo = (footype *) g_mem_chunk_alloc(pile_of_mem);

[* the same thing, with g_mem_chunk_new */
foo = g_mem_chunk_new(footype, pile_of_mem);

/* the same thing, but zero out the memory */
foo = g_mem_chunk_newO(footype, pile_of _mem);

The macros' purposes should be fairly obvious from the code. Note that g_mem_chunk_create() is a shortel
way to use g_mem_chunk_new() if you know the atom data type. Note, too, that each macro automatically
pieces together the chunk's name. Furthermore, g_mem_chunk_new() and g_mem_chunk_new0Q() are the
memory chunk counterparts of g_new() and g_new0().

If you want to see some statistics on your current memory chunks, use g_mem_chunk_print(chunk) for a bri
report on one chunk or use g_mem_chunk_info() to see detailed information for all chunks.

1.4.2 Quarks

To label a piece of data in your program, you usually have two options: a numeric representation or a string.
Both have their disadvantages. Numbers are difficult to decipher on their own. If you know roughly how
many different labels you need beforehand, you can define an enumeration type and several alphanumeric
symbols. However, you can't add a label at run time.

On the other hand, you can add or change strings at run time. They're also easy enough to understand, but
string comparison takes longer than arithmetic comparison, and managing memory for strings is an extra
hassle that you may not wish to deal with.

GLib has a data type called GQuark that combines the simplicity of numbers with the flexibility of strings.
Internally, it is nothing more than an integer that you can compare and copy. GLib maps these numbers to
strings that you provide through function calls, and you can retrieve the string values at any time.

To create a quark, use one of these two functions:

GQuark quark;
gchar *string;

quark = g_quark_from_string(string);
quark = g_quark_from_static_string("string");

Both functions take a string as their only parameter and return the quark. The difference between the two is
that g_quark_from_string() makes a copy of the string when it does the mapping, and
g_quark_from_static_string() does not.

WarningBe careful with g_quark_from_static_string(). It saves a tiny bit of memory and CPU every time you
call it, but may not be worthwhile because you create an additional dependency in your program thz
can cause debugging problems later.

If you want to verify that string has a quark value, call

1.4.2 Quarks 16

The Official GNOME 2 Developer's Guide

g_quark_try_string(string)

This function returns the string's quark if the program has already defined the string as a quark. A return val
of zero (0) means that no quark corresponds to that string (there are no quarks with a humeric value of zero

To recover the string from a quark, use
string = g_quark_to_string(quark);

If successful, this function returns a pointer to the quark string. Make sure that you don't run any free() calls
on that pointer itisn't a copy.

Here is a short quark demonstration program:

GQuark *my_quark = 0;
my_quark = g_quark_from_string("Chevre");

if (lg_quark_try("Cottage Cheese"))

{
g_print("There isn't any quark for \"Cottage Cheese\"\n");

}

g_print("my_quark is a representation of %s\n", g_quark_to_string(my_quark));

Note GQuark values are numbers assigned to strings and are efficient when tested for equality. However, th
have no set numeric order. You can't use the quark values to test for alphabetic order, and thus, you cz
use them as sorting keys. If you want to compare the strings that quarks represent, you must extract th
strings with g_quark_to_string() and then apply an operation like strcmp() or g_ascii_strcasecmp() to
the result.

1.4.3 C Strings

GLib offers several string functions that interoperate with strings in the standard C library (not to be confuse
with GString, a GLib—specific string type described in Section 1.5.1). You can use these functions to augme
or supplant functions like sprintf(), strdup(), and strstr().

The following functions return a pointer to a newly allocated string that you must deallocate yourself:
« gchar *g_strdup(const gchar *str)

Copies str and returns the copy.
« gchar *g_strndup(const gchar *str, gsize n)

Copies the first n characters of string and returns the copy. The copy always contains an additional
character at the end: a NULL terminator.
« gchar *strnfill(gsize length, gchar *fill_char)

Creates a string that is length characters long and sets each character in the string to fill_char.
 gchar *g_strdup_printf(const gchar *format, ...)

Formats a string and parameters like sprintf(). However, you don't need to create and specify a buffe
as you would in sprintf(); GLib does this automatically.
« gchar *g_strdup_vprintf(const gchar *format, va_list args)

1.4.3 C Strings 17

The Official GNOME 2 Developer's Guide

Like the preceding function, but is the analog to vsprintf(), a function that uses C's variable argument
facility described on the stdarg(3) manual page.
 gchar *g_strescape(const gchar *source, const gchar *exceptions)

Translates special control characters, backslashes, and quotes in source to the normal ASCII range.
For example, this function converts a tab to \t. The translations performed are for the backspace (\b)
form feed (\f), line feed (\n), carriage return (\r), backslash (\ becomes \\), and double quotes ("
becomes \"). Any additional non—ASCII characters translate to their octal representation (for example
escape becomes \27). You can specify any exceptions in the string exceptions.

 gchar *g_strcompress(const gchar *source)

The reverse of g_strescape(); that is, converts an ASClI-formatted string back to one with real escaj
characters.
 gchar *g_strconcat(const gchar *stringl, ..., NULL)

Takes any number of strings as parameters and returns their concatenation. You must use NULL as
the final argument.
« gchar *g_strjoin(const gchar *separator, ..., NULL)

"bar", NULL) yields "foolbar". As with g_strconcat(), you must place NULL at the end of the
argument list. With a NULL separator, gstrjoin() operates like g_strconcat().

Joins a number of strings, adding separator between each string. For example, gstrjoin("|", "foo",

For the following functions, you may need to allocate space for the result; GLib won't make a copy for you.
These functions work much like their C counterparts, where one of the arguments contains a buffer large
enough for a processed string.

« gchar *g_stpcpy(gchar *dest, const gchar *src)

Copies src to dest, including the NULL terminator. Upon success, this function returns a pointer to
the copy of this terminator in dest. This function is useful for efficient string concatenation.
« gint g_snprintf(gchar *string, gulong n, const gchar *format, ...)

Like sprintf(); you must ensure that there is enough space for string in the result. However, you must
specify the length of this buffer with n. The return value is the length of the output string, even if the
output is truncated due to an insufficient buffer. This is the C99 standard, not the traditional snprintf()
behavior that your machine's C library may exhibit.

« gint g_vsnprintf(gchar *string, gulong n, const gchar *format, va_list list)

Like the preceding function, but with variable arguments.
 gchar *g_strreverse(gchar *string)

Reverses the order of the characters in string. The return value is also string.
« gchar *g_strchug(gchar *string)

Eliminates whitespace from the beginning of string, shifting all applicable characters to the left in
string. Returns string.
 gchar *g_strchomp(gchar *string)

Eliminates whitespace from the end of string. Returns string.

1.4.3 C Strings 18

The Official GNOME 2 Developer's Guide

 gchar *g_strstrip(gchar *string)

Eliminates whitespace from the beginning and end of string. Returns string.
« gchar *g_strdelimit(gchar *string, const gchar *delimiters, gchar *new_delimiter)

Changes any characters found in delimiters to new_delimiter. If delimiters is NULL, this function
uses " —|<>."; this is the standard set found in G_STR_DELIMITERS. Returns string.
« gchar *g_strcanon(gchar *string, const gchar *valid_chars, gchar *substituter)

Replaces any character in string that isn't in valid_chars with substituter. Returns string. Note that
this function complements g_strdelimit().

With the exception of g_ascii_dtostr(), these string functions do not alter their arguments:
 gchar *g_strstr_len(const gchar *haystack, gssize haystack_len, const gchar *needle)

Looks through the first haystack_len characters of haystack for needle. This function stops when it
finds the first occurrence, returning a pointer to the exact place in haystack_len. When this function
fails to find needle, it returns NULL.

« gchar *g_strrstr(const gchar *haystack, const gchar *needle)

Like g_strstr_len, except that this function returns the last incidence of needle in haystack, and it doe
not take a size parameter.

 gchar *g_strrstr_len(gchar *haystack, gssize haystack len, gchar *needle)

Identical to g_strrstr, except that it searches only the first haystack_len characters of haystack.
* gsize g_printf_string_upper_bound(const gchar *format, va_list args)

Examines format and args, returning the maximum string length required to store printf() formatting.
 gdouble g_ascii_strtod(const gchar *nptr, gchar **endptr)

Converts string to a double-length floating—point number. If you supply a valid pointer address for
endptr, this function sets the pointer to the last character in string that it used for the conversion. The
difference between this function and strtod() is that this function ignores the C locale.

« gchar *g_ascii_dtostr(gchar *buffer, gint buf _len, gdouble d)

Converts d into an ASCII string, writing into buffer of maximum length buf_len and ignoring the C
locale so that the output format is always the same. The resulting string is never longer than
G_ASCII_DTOSTR_BUF_SIZE. This function returns a pointer to buffer.

NoteUse g_ascii_strtod() and g_ascii_dtostr() to write to and read from files and data streams, not for
anything that people read. Because these functions use a unified, locale-independent format, you'll be
protected from certain problems. For example, if someone sets a German locale and runs your prograr
you won't have to worry about the fact that its locale reverses the meanings of the comma and dot for
numbers.

Finally, here are a few functions that handle arrays of strings (gchar **). NULL pointers terminate these

arrays.

 gchar **g_strsplit(const gchar *string, const gchar *delimiter, gint max_tokens)

1.4.3 C Strings 19

The Official GNOME 2 Developer's Guide

Uses delimiter as a guide to chop string into at most max_tokens parts. The return value is a newly
allocated array of strings that you must deallocate yourself. If the input string is empty, the return
value is an empty array.

 gchar *g_str_joinv(const gchar *separator, gchar **str_array)

Fuses the array of strings in str_array into a single string and returns it as a newly allocated string. If
separator isn't NULL, g_str_joinv() places a copy of it between each component string.
 gchar **g_strdupv(gchar **str_array)

Returns a complete copy (including each component string) of str_array.
« void **g_strfreev(gchar **str_array)

Deallocates the array of strings str_array and the strings themselves.

WarningDon't use anything other than g_strfreev() to free up an array of strings returned by a function like
g_strsplit() or g_strdupv().

1.4.4 Unicode and Character Encodings

The traditional C string functions and those in the previous section are byte strings. These functions don't ne
to worry about the length of an individual character because each gchar is one byte long.

The functions in this section are different, because they work with Unicode characters and strings. Unicode
an extensive, unified character set that can encode any character in any language using the Universal
Character Set (UCS; see ISO 10646). Unicode was originally a 16—bit encoding. GLib supports three differe
encoding schemes (see also man utf-8):

* UCS—4 is the full 32—-bit UCS—-compatible encoding. Every character is 4 bytes long, with the
Unicode character occupying the lower 2 bytes (the other 2 are typically zero). The GLib data type fc
UCS—4 is gunichar. It is 32 bits wide and is the standard Unicode type. Some functions use UCS-4
strings (gunichar *).

« UTF=16 is the native encoding (UTF stands for Unicode Transformation Format). Every character is
2 bytes wide. GLib uses the gunichar2 type for characters in UTF-16. As with UCS-4, you will see
UTF-16 strings (gunichar2 *).

« UTF=8 is important in practice, because it is compatible with ASCII. Normal ASCII characters use 8
bits, but other characters may require 2 or more bytes. Therefore, every file in ASCII format contains
valid UTF-8 text, but not the other way around. A significant disadvantage is that the nonuniform
character width of UTF-8 renders random access in a text file next to impossible; to get to a certain
part, you must start from the beginning and iterate over the characters. GLib doesn't have a type for
UTF-8 because the characters don't have uniform sizes. However, you can encode UTF-8 strings
with normal character strings (gchar *).

GLib generally uses the 32-bit UCS—-4 gunichar type as its Unicode standard. The following functions test
individual Unicode characters:

« gboolean g_unichar_validate(gunichar c) returns TRUE if ¢ is a valid Unicode character.
« gboolean g_unichar_isdefined(gunichar c) returns TRUE if ¢ has a Unicode assignment.
« gboolean g_unichar_isalnum(gunichar c) returns TRUE if c is a letter or numeral.

« gboolean g_unichar_islower(gunichar c) returns TRUE if ¢ is a lowercase letter.

« gboolean g_unichar_isupper(gunichar c) returns TRUE if ¢ is an uppercase letter.

1.4.4 Unicode and Character Encodings 20

The Official GNOME 2 Developer's Guide

« gboolean g_unichar_istitle(gunichar c) returns TRUE if c is titlecase.

Note Titlecase doesn't appear much in English (or many other languages, for that matter). A titlecase letter i
usually some sort of composite character or ligature where the first part of the composite goes to
uppercaﬁe when the letter is capitalized at the start of a word. An example is the Lj in the Croatian wor
Ljubija. "=

« gboolean g_unichar_isalpha(gunichar c) returns TRUE if c is a letter.

« gboolean g_unichar_isdigit(gunichar c) returns TRUE if ¢ is a base-10 digit.

« gboolean g_unichar_isxdigit(gunichar c) returns TRUE if ¢ is a hexadecimal digit.

« gboolean g_unichar_ispunct(gunichar c) returns TRUE if c is some sort of symbol or punctuation.

« gboolean g_unichar_isspace(gunichar c) returns TRUE if ¢ is a form of whitespace, including spaces
tabs, and newlines.

« gboolean g_unichar_iswide(gunichar c) returns TRUE if ¢ normally requires twice the space of a
normal character to draw on the screen.

« gboolean g_unichar_iscntrl(gunichar c) returns TRUE if ¢ is a Unicode control character.

« gboolean g_unichar_isgraph(gunichar c) returns TRUE if you can print c; that is, if it's not a control
character, format character, or space.

« gboolean g_unichar_isprint(gunichar c) is like g_unichar_isgraph(), but also returns TRUE for space:

If you have a gunichar character ¢ and want to know its classification in Unicode, you can run
g_unichar_type(c)
This function returns one of the following constants (more information in [TUC]):

« G_UNICODE_LOWERCASE_LETTER: Lowercase letter

« G_UNICODE_UPPERCASE_LETTER: Uppercase letter

« G_UNICODE_TITLECASE_LETTER: Titlecase letter

* G_UNICODE_CONTROL: Unicode control character

* G_UNICODE_FORMAT: Unicode formatting character

*« G_UNICODE_MODIFIER_LETTER: Modifier (odd-looking letters that modify pronunciation)

« G_UNICODE_SURROGATE: A composite of two 16-bit Unicode characters that represents one
character

* G_UNICODE_UNASSIGNED: Currently unassigned character

* G_UNICODE_PRIVATE_USE: Character reserved for private, internal use

« G_UNICODE_OTHER_LETTER: Any miscellaneous letter

* G_UNICODE_COMBINING_MARK: Mark that may be combined with another letter

« G_UNICODE_ENCLOSING_MARK: Mark that contains another letter

*« G_UNICODE_NON_SPACING_MARK: Mark that usually requires no space to print; its position
depends on another base character

* G_UNICODE_DECIMAL_NUMBER: Digit

« G_UNICODE_DECIMAL_LETTER_NUMBER: Numeral made from a letter

« G_UNICODE_OTHER_NUMBER: Any other numeral

*« G_UNICODE_CONNECTION_PUNCTUATION: Binding punctuation

*« G_UNICODE_DASH_PUNCTUATION: Dashlike punctuation

* G_UNICODE_OPEN_PUNCTUATION: Opening punctuation (such as a left parenthesis)

* G_UNICODE_CLOSE_PUNCTUATION: Closing punctuation

*« G_UNICODE_INITIAL_PUNCTUATION: Starting punctuation

1.4.4 Unicode and Character Encodings 21

The Official GNOME 2 Developer's Guide

* G_UNICODE_FINAL_PUNCTUATION: Terminal punctuation

* G_UNICODE_OTHER_PUNCTUATION: Any other punctuation

*« G_UNICODE_CURRENCY_SYMBOL: Monetary currency symbol

* G_UNICODE_MODIFIER_SYMBOL: Modifier symbol (for example, an accent)
* G_UNICODE_MATH_SYMBOL: Mathematic symbol

* G_UNICODE_OTHER_SYMBOL: Any other odd symbol

*« G_UNICODE_LINE_SEPARATOR: A line break (for example, a line feed)

*« G_UNICODE_PARAGRAPH_SEPARATOR: Divides paragraphs

* G_UNICODE_SPACE_SEPARATOR: An empty space

Here are some functions for converting single gunichar characters:
* gunichar g_unichar_toupper(gunichar c)

Converts ¢ to uppercase if possible and returns the result. It does not modify the character if it has al
uppercase version.
* gunichar g_unichar_tolower(gunichar c)

Converts c to lowercase if possible.
* gunichar g_unichar_totitle(gunichar c)

Converts c to titlecase if possible.
e gint g_unichar_digit_value(gunichar c)

Returns the numeric equivalent of c. If ¢ isn't a numeral, this function returns —1.
« gint g_unichar_xdigit_value(gunichar c)

Same as the preceding function, but with hexadecimal numerals.

Now that you know how to do some interesting things with gunichar characters, you probably want to know
how you can get your hands on this kind of data. For the most part, you must extract Unicode characters fro
UTF-8-encoded strings, and in the process, you'll want make certain that these strings are valid, navigate
them, and read the individual characters.

NoteIn the functions you're about to see, you can provide a NULL-terminated string, but this isn't always
necessary. If a function takes a gssize parameter, you can specify the number of bytes in the UTF-8
string that the function should process. If you want to tell a function to process an entire
NULL-terminated string, use -1 as the size.

 gboolean g_utf8 validate(const gchar *str, gssize max_len, const gchar **end)

Reads at most max_len bytes of the UTF-8 string str, returning TRUE if the string is valid UTF-8
text. This function returns FALSE upon failure, and you can also specify an address to a gchar pointt
as the end parameter. The function sets this *end to the first invalid character in the string when ther
is a problem. Otherwise, *end goes to the end of a valid string.

 gunichar g_utf8 get char_validated(const gchar *p, gssize max_len)

Tries to extract the byte sequence at p from a UTF-8 character as a gunichar UCS-4 character,
making sure that the sequence is valid UTF-8. This function returns the converted character upon
success. Upon failure, there are two possible return values: (gunichar) -2 if the function ran out of
data to process, or -1 if the sequence was invalid.

1.4.4 Unicode and Character Encodings 22

The Official GNOME 2 Developer's Guide

 gunichar g_utf8 get char(const gchar *p)
Converts the UTF-8 character at p to a gunichar character and returns this result.
Warningg_utf8 get char() doesn't check the validity of its parameters. Use this function for strings that you
have already verified with g_utf8 validate(). Using these two functions is faster than running
g_utf8 get char_validated() on every single character in the string.
The rest of the functions in this section assume that their input is valid UTF-8. Unpleasant circumstances
arise if the string is not UTF-8.
« gchar *g_utf8_next_char(gchar *p)
Returns a pointer to the character in the UTF-8 string following p. Therefore,
p = g_utf8_next_char(p);
advances a pointer by one character. The pointer should not be at the end of the string. (This is
actually a macro in the current GLib implementation, not a function.)
 gchar *g_utf8_find_next_char(const gchar *p, const gchar *end)
Same as the preceding function, but with end pointing to the end of the UTF-8 string p. If end is
NULL, this function assumes that p ends with a NULL value. The return value is NULL if p already
points the end of the string.
 gchar *g_utf8_prev_char(gchar *p)
Same as the preceding function, but looks back to the previous character. There is no error check, a
p should not point the start of a string.
e gchar *g_utf8_find_prev_char(const gchar *str, const gchar *p)
Also returns the character previous to p, but provides an additional error check when you specify the
start of the string with str. This function returns NULL upon failure.
« glong g_utf8 pointer_to_offset(const gchar *str, const gchar *pos)

Returns the offset (that is, the character index) of pos in the UTF-8 string str.
 gchar *g_utf8_offset_to_pointer(const gchar *str, const gchar *pos)

Returns a pointer to the pos—th character in the UTF-8 string str.
Because the traditional C string library doesn't work on UTF-8 strings, GLib provides some equivalents:
« glong g_utf8_strlen(const gchar *str, gssize max)

Computes the length (in characters) of str. You can specify a maximum byte length with max.
 gchar *g_utf8_strncpy(gchar *dest, const gchar *src, gsize n)

Copies n UTF-8 characters from src to dest. Note that you must allocate the necessary space at de
and that n is the number of characters, not bytes.

 gchar *g_utf8_strchr(const gchar *str, gssize len, gunichar c)

1.4.4 Unicode and Character Encodings 23

The Official GNOME 2 Developer's Guide

Returns a pointer to the first occurrence of c in str, or NULL if the character is not present. Note that
must be in the UCS-4 encoding.
 gchar *g_utf8_strrchr(const gchar *str, gssize len, gunichar c)

Same as the preceding function, but looks for the last occurrence of ¢ in str.
 gchar *g_utf8_strup(const gchar *str, gssize len)

Returns a new copy of str, translated to uppercase. This string could have a different length;
characters such as the German scharfes S go from one character (3) to two (SS) when converted to
uppercase. You are responsible for deallocating the new string.

 gchar *g_utf8_strdown(const gchar *str, gssize len)

Same as the preceding function, but converts uppercase letters to lowercase. Don't expect a string li
NUSSDORFER STRASSE to become Nuf3dorfer Stral3e, though; your locale software probably isn't
smart enough to get this right.

 gchar *g_utf8_casefold(const gchar *str, gssize len)

Changes the mixed—case version of str into a case-independent form and returns the result as a ne\
string. This result isn't suitable for printed output, but works for comparison and sorting.
 gchar *g_utf8_normalize(const gchar *str, gssize len, GNormalizeMode mode)

Produces a canonical version of str. In Unicode, there are several ways of representing the same
character, such as the case of a character with an accent: It can be a single character or a compositi
of a base character and an accent. To specify mode, use one of the following:

¢ G_NORMALIZE_DEFAULT: Normalize everything that doesn't affect the text content.

¢ G_NORMALIZE_DEFAULT_COMPOSE: Same as the preceding, but attempt to make
composed characters as compact as possible.

¢ G_NORMALIZE_ALL: Change everything, including text content. For example, this would
convert a superscripted numeral to a standard numeral.

¢ G_NORMALIZE_ALL _COMPOSE: Same as the preceding, but attempt to make composed
characters as compact as possible.

Note Before you compare UTF-8 strings, normalize them with the same mode. The strings might have the
same value but slightly different encoding styles that a comparison function won't recognize.

« gint *g_utf8_collate(const gchar *strl, const gchar *str2)
Compares the UTF-8 strings strl and str2 linguistically (at least as much as possible). If strl is less
than str2 in the sort order, the return value is —1; if the strings are equal, 0 is the result; and if str2
comes before strl, this function returns 1.

« gchar *g_utf8_collate_key(const gchar *str, gssize len)

Returns a sorting key for str. If you compare two of these keys with strcmp(), the result will be the
same as a comparison of their original strings with g_utf8_collate().

NoteIf you compare a number of UTF-8 strings frequently (for example, if you're sorting them), then you
should obtain keys for all of the strings and use strcmp() as your comparison function. This approach is
much faster than using g_utf8_collate() every time, because that function normalizes its parameters
every time it runs, and that involves not only a bit of computation, but also memory management time.

1.4.4 Unicode and Character Encodings 24

The Official GNOME 2 Developer's Guide

Several conversion functions translate strings among the different Unicode encoding schemes. In general, t
take a string str as input and produce a freshly allocated NULL-terminated string with the same content in a
different format. Some of these functions have an items_read parameter, which is actually a pointer to an
integer; it can write the number of base units converted to this integer (here, base units refers to the number
bytes in UTF-8, 16-bit words in UTF-16, and 32-bit words in UCS-4). Therefore, if you want a function to
store this count in a variable i, you would pass &i as the items_read parameter to the function. Similarly, you
can employ the items_written parameter to record the number of characters written to the output stream. Yo
can use NULL for both of these parameters if you don't care about this information.

If the input is in UTF-8 format, and items_read is NULL, an error will occur when an incomplete character
occurs at the end of the input string (str). If you want to find out what this (or any other) error is, use the
address of a GError pointer as the error parameter (see the "Error Codes" section on the next page; the errc
class is G_CONVERT_ERROR). These functions return NULL on failure:

 gunichar2 *g_utf8 to_utfl16(const gchar *str, glong len, glong *items_read, glong *items_written,
GError **error)

Converts a UTF-8 string to a UTF-16 string.
* gunichar *g_utf8 to_ucs4(const gchar *str, glong len, glong *items_read, glong *items_written,
GError **error)

Converts a UTF-8 string to a UCS—4 string.
 gunichar *g_utf8 to_ucs4 fast(const gchar *str, glong len, glong *items_written)

Same as the preceding function, but roughly twice as fast, because it doesn't perform any error
checking. Consequently, this function doesn't have the items_read and error parameters.

 gunichar *g_utf16_to_ucs4(const gunichar2 *str, glong len, glong *items_read, glong *items_written,
GError **error)

Converts UTF-16 to UCS—4.
« gchar *g_utfl6_to_utf8(const gunichar2 *str, glong len, glong *items_read, glong *items_written,
GError **error)

Converts UTF-16 to UTF-8.
 gunichar2 *g_ucs4_to_utfl6(const gunichar *str, glong len, glong *items_read, glong *items_written,
GError **error)

Converts UCS-4 to UTF-16.

e gchar *g_ucs4_to_utf8(const gunichar *str, glong len, glong *items_read, glong *items_written,
GError **error)

Converts UCS—4 to UTF-8.
* gint *g_unichar_to_utf8(gunichar c, gchar *outbuf)

Stores the UCS—4 character ¢ as a UTF-8 character in outbuf. You must reserve at least 6 bytes in
this buffer. The return value is the number of bytes written to the buffer. If outbuf is NULL, this
function doesn't perform any translation; it simply reports the size of ¢ in UTF-8.

Finally, a number of functions perform translations between Unicode and other character encodings:

1.4.4 Unicode and Character Encodings 25

The Official GNOME 2 Developer's Guide

 gchar *g_locale_to_utf8(const gchar *str, glong len, glong *items_read, glong *items_written, GError
**error)

Changes a string from your current locale's character encoding to UTF-8. This function (and those
that follow) work just like the previous conversion functions.

« gchar *g_filename_to_utf8(const gchar *opsysstring, glong len, glong *items_read, glong
*items_written, GError **error)

Converts the filename opsysstring from your operating system to UTF-8.
« gchar *g_filename_to_uri(const char *filename, const char *hostname, GError **error)

Combines filename and hostname into a UTF-8-encoded URI (Uniform Resource Identifier; URLs
are a subset of these). The filename string must be a full pathname. You can specify NULL for
hostname.

 gchar *g_locale_from_utf8(const gchar *utf8string, glong len, glong *items_read, glong
*items_written, GError **error)

The opposite operation of g_locale_to_utf8(); this function translates utf8string into your current
locale.

 gchar *g_filename_from_utf8(const gchar *utf8string, glong len, glong * items_read, glong
*items_written, GError **error)

Same as the preceding function, but the result is a filename that your operating system understands.
« gchar *g_filename_from_uri(const gchar *uri, char **hostname, GError **error)

Takes a uri value in UTF-8 encoding and produces its filename. If there is a hostname in uri as well,
this function will extract it and set the pointer hostname to the hostname. If you don't care about the
hostname, you can set this parameter to NULL.

Error Codes
The G_CONVERT_ERROR error class contains the following conditions:

« G_CONVERT_ERROR_NO_CONVERSION: The requested conversion is impossible.

* G_CONVERT_ERROR_ILLEGAL_SEQUENCE: The input string contains an invalid byte
sequence.

« G_CONVERT_ERROR_FAILED: The translation failed for an unknown reason.

« G_CONVERT_ERROR_PARTIAL_INPUT: The input string isn't complete.

* G_CONVERT_ERROR_BAD_URI: The input URI isn't valid.

* G_CONVERT_ERROR_NOT_ABSOLUTE_PATH: A path given as input wasn't an absolute path,
as required by a function like g_filename_to_uri().

1.4.5 Timer

The Gtimer is nothing more than a stopwatch that is as accurate as your system clock. Here is a
demonstration:

/* gtimerdemo.c —— demonstration of GTimer */

#include <glib.h>

1.4.4 Unicode and Character Encodings 26

The Official GNOME 2 Developer's Guide

#define DURATION 200000

int main(int argc, char **argv)

{
GTimer *clock = NULL;

gint i;
gdouble elapsed_time;
gulong us; /* microseconds */

clock = g_timer_new();
g_timer_start(clock);
g_print("Timer started.\n");

g_print("Loop started.. ");
for (i=0; i < DURATION; i++) {; }
/* wasting CPU time like this is only allowed in programming examples */

g_print("and finished.\n");
g_timer_stop(clock);
g_print("Timer stopped.\n");

elapsed_time = g_timer_elapsed(clock, &us);
g_print("Elapsed: %g s\n", elapsed_time);
g_print(" %Id us\n", us);

g_timer_destroy(clock);

return O;

}

This small program illustrates everything that you need to know about GTimer. The clock variable is a pointe
to a GTimer structure, initially set to NULL. To create one of these structures, the program calls
g_timer_new(); it sets clock to the return value (a GTimer pointer to the new structure).

The g_timer_start() function starts the stopwatch. The program runs through a loop that does nothing but
waste processor time! Afterward, it uses g_timer_stop() to halt the timer.

To retrieve the current state of the timer, call
time = g_timer_elapsed(timer, us_ptr);

The return value is the elapsed time in seconds, represented as a double-width floating—point number. In
addition, you can obtain the fractional part of the elapsed time in microseconds (millionths of a second) with
g_timer_elapsed() if you provide a pointer to a gulong variable as us_ptr. Because this number does not
include the whole numbers of seconds, you must multiply the integral part of the second count (obtained by
type cast) by one million and add it if you want a total number of microseconds.

Note If you don't care about microseconds, set us_ptr to NULL.

You can reset a GTimer structure with g_timer_reset(timer), and you can remove one that is no longer need
with g_timer_destroy(timer).

1.4.4 Unicode and Character Encodings 27

The Official GNOME 2 Developer's Guide

1.4.6 Message Logging

To help with runtime error diagnosis, GLib offers several utilities for logging messages to the system consols
These are, in order of the priority levels:

1. g_message() for informative messages indicating normal runtime behavior
2.g_warning() for warnings or problems that won't cause errant operation (at least not yet)
3. g_critical() for warnings that likely are going to matter

4. g_error() for fatal errors; calling this function terminates your program

These utilities take parameters like printf() that is, a format string followed by a list of substitution
parameters. You don't need to put a newline at the end of the format, though. To ensure that you and your
users know that these messages come from your software, you should set the G_LOG_DOMAIN macro wh
you compile. This can be a short identification string that identifies the application or library. Most
GNOME-based programs define G_LOG_DOMAIN with a compiler option like
-DG_LOG_DOMAIN=\"name\".

This program shows all four message logging types:

/* messagedemo.c —— show logging features */

#include <glib.h>

#define NR 42

int main(int argc, char **argv)

{
g_message("Coffee preparation engaged");
g_warning("Bean canister #%d empty", NR);
g_critical("Water flow failure");
g_error("Heating element incinerated");

/* this program shouldn't reach this point */
return O;

}
The output should look something like this:

** Message: Coffee preparation engaged
** (process:3772): WARNING **: Bean canister #42 empty
** (process:3772): CRITICAL **: Water flow failure

** ERROR **: Heating element incinerated
aborting...

Marking Levels as Fatal
The g_error() call in the preceding program yields an error message telling you that the program is about to

abort (and perhaps produce a core dump). You can configure other log priority levels as fatal so that they
behave in the same way. For example,

g_log_set_always_fatal(G_LOG_LEVEL_WARNING|G_LOG_LEVEL_CRITICAL)

1.4.6 Message Logging 28

The Official GNOME 2 Developer's Guide

sets this behavior for warning and critical messages. This function's argument is a bit mask that you create |
applying bitwise OR to any of the following constants:

« G_LOG_LEVEL_CRITICAL
« G_LOG_LEVEL_WARNING
« G_LOG_LEVEL_MESSAGE
« G_LOG_LEVEL_INFO

« G_LOG_LEVEL_DEBUG

Note If an application uses GTK+ or GNOME libraries, you can also supply ——g—fatal-warnings as a
command-line option to make all warning levels fatal.
Free—Form Messages

If you have have a message that doesn't fit the mold or tone of the preformatted logging utilities, you can se
it to the console with g_print() or g_printerr(). The g_print() function works like printf(), sending its output to
the standard output (stdout).g_printerr() sends to the stderr, the standard error.

Note Unlike message logging tools like g_message(), g_print() and g_printerr() require that you specify your
own line break at the end of your message.

You may be wondering why you can't just use fprintf() with the desired output stream to do this work. Believ:

it or not, this function may not work well on a Windows system. Another reason is that you can define your

own message—processing functions that can alter the log messages and send them output to any place that

want (such as a dialog window or log file). Here is an example:

/* printhandlerdemo.c */

#include <stdio.h>
#include <glib.h>

#define N 1

[* print messages in ALL CAPS */
void my_printerr_handler(gchar *string)

{
GString *msg;

msg = g_string_new(string);
msg = g_string_ascii_up(msg);
fprintf(stderr, "%s\n", msg—>str);
g_string_free(msg, TRUE);

}

int main(int argc, char **argv)

{
/* print to stdout */

g_print("If you lie %d time, no one believes you.\n", N);

[* print to stderr */
g_printerr("Ouch.\n");

/* but if you lie all of the time... */
g_set_printerr_handler((GPrintFunc)my_printerr_handler);
g_printerr("%d. Ouch. Ouch. Ouch. (Hey, that really hurts.)", N);

return O;

}
1.4.6 Message Logging 29

The Official GNOME 2 Developer's Guide

You'll see how the string functions in my_printerr_handler() work in Section 1.5.1. Here is this program's
output:

If you lie 1 time, no one believes you.
Ouch.
1. OUCH. OUCH. OUCH. (HEY, THAT REALLY HURTS.)

As you can see, you set print handlers with g_set_print_handler() and g_set_printerr_handler(). Their only
argument is a GPrintFunc function. The type definition is as follows:

typedef void (*GPrintFunc) (const gchar *string);
Therefore, your handler must be a void function with a single string argument.

There are two more functions that you should know about when constructing your own error messages:
g_strerror() and g_strsignal(). These are platform—-independent implementations of strerror() and strsignal().
The g_strerror() function takes an error code such as EBADF or EINVAL and converts it to a slightly more
comprehensible message such as "Bad file descriptor" or "Invalid argument." Similarly, g_strsignal() returns
the name of a signal when given a numeric signal code.

The advantages of these functions over strerror() and strsignal() are not just that they're platform independe
but that they also create UTF-8 output suitable as input for other libraries, such as GTK+.

1.4.7 Debugging Functions

GLib has several facilities that can help you find bugs in your program. Two of these are macros that take th
place of normal return statements. In addition to breaking out of the function, they log a
G_LOG_LEVEL_CRITICAL message. Therefore, you can use them in places that your program should not
reach in normal operation:

« g_return_if reached() for void functions.
e g_return_val_if _reached(val) for other functions, where you need to return a value val.

Two other similar convenience macros are

g_return_if_fail(test)
g_return_val_if_fail(test, val)

If test is false, the function returns, logging a message in the process. You often see these at the beginning
GNOME functions, checking for valid parameters.

There are two more macros that carry out the rudimentary contract concept the assertion, where a certain
condition must hold in order for a program to proceed in any meaningful sense:

« g_assert() halts the program with g_error() if its parameter evaluates to FALSE.
e g_assert_not_reached() doesn't take a parameter; it simply stops the program with an error messag

You'll find assertions throughout this book, as well as in most GNOME applications. In addition, most of the

functions in the GNOME platform libraries use these safety features to protect against inappropriate
arguments.

1.4.7 Debugging Functions 30

The Official GNOME 2 Developer's Guide

If your program is far enough along that you're sure that you don't need any assertions, you can set the
G_DISABLE_ASSERT macro when you compile (for example, give the compiler a
-DG_DISABLE_ASSERT flag). This disables all assertions and saves a little processor time, because it
eliminates the tests.

1.4.8 Exception Handling with Error Reporting

The routines in the previous section help diagnose and eliminate serious runtime errors. However, these wo
help you much with nonfatal errors that your program can overcome, ignore, or treat in a special way. For
example, if a graphical application can't open a file selected from a pop-up file browser, you normally don't
want the whole application to abort. Instead, you prefer it to find out just what the problem was, perhaps put
up a dialog box, and do whatever it would do if you clicked the file browser's Cancel button.

People tend to refer to these types of errors as exceptions and ways to compensate for them as exception
handling (the online GLib manual uses the term error reporting). The traditional C style is for functions to
return special error codes to test after a call; some functions provide additional details (for example, through
the errno global variable). Higher—level languages often provide special syntax, such as try{}, throw(),
catch(){}, and the like in C++ and Java.

GLib doesn't have any complex features like these because it uses C. However, it does provide a system ce
GError that's a little easier to use than the usual do-it-yourself method in C. The GError data structure is at
the core; how you use this structure is just as important as its implementation.

GError and GError Functions

Functions that use GError take the address of a GError pointer as their last parameter. If you want to use a
variable err declared with GError *err, you must pass it as &err. In addition, you should set the pointer's valu
to 0. You can specify NULL as this parameter if you like; in that case, the function will disable its error
reporting.

A GError structure has the following fields:

« domain (type GQuark): The domain or class of the error; a label for the module or subsystem where
the error occurs. Every error domain must have a macro definition with the format
PREFIX_MODULE_ERROR (for example, G_FILE_ERROR). The macro expands to a form that
returns the quark's numeric value.

« code (type gint): The error code; that is, the specific error inside the error domain. Every possible
error code requires a corresponding symbol of the form PREFIX_MODULE_ERROR_CODE in an
enumeration type called PrefixModuleError (for example, G_FILE_ERROR_TYPE in GFileError).

* message (type gchar *): A complete description of the error, in plain language.

The following fragment demonstrates how to read an error condition from a function (do_something()) that
uses GError:

GError *error = NULL;

/* use this GError variable as last argument */
do_something(argl, arg2, &error);

/* was there an error? */
if (error 1= NULL)

1.4.8 Exception Handling with Error Reporting 31

The Official GNOME 2 Developer's Guide
{

/* report the message */
g_printerr("Error when doing something: %s\n", error—>message);

/* free error structure */
g_error_free(error);

}

You can see from this code that you need to deallocate the error structure with g_error_free() after you're
finished. Therefore, if you supply a GError parameter to a function, you should always check it; otherwise,
you risk a memory leak.

If you want to do something other than report the error, you'll probably want to know the error domain and
code. Instead of checking this by hand, you should use g_error_matches(), a function that matches errors
against domains and codes. The first argument is the GError structure, the second is an error domain, and t
third is a specific error code. If the error matches the domain and code, the function returns TRUE; otherwis
it returns FALSE. Here is an example:

GError *error = NULL;
gchar *filename;
BluesGuitar *fender, *bender;

<<. >>

filename = blues_improvise(fender, BLUES_A_MAJOR, &error);
if (error 1= NULL)

/* see if the expensive guitar is broken */
if (g_error_matches(error, BLUES_GUITAR_ERROR, BLUES_GUITAR_ERROR_BROKEN))

[* if so, try the cheap guitar */
g_clear_error(&error);
filename = blues_improvise(bender, BLUES_A_MAJOR, &error);
}
}

/* if nothing's working, default to Clapton */
if (error 1= NULL)
{

filename = g_strdup(“clapton-1966.wav");
g_error_free(error);

}

blues_play(filename);

In this example, blues_improvise() runs, returning a filename if there wasn't a problem. However, if an error
occurs, the program checks to see if the code was BLUES GUITAR_ERROR_BROKEN in the
BLUES_GUITAR_ERROR domain. If this was the problem, the program tries one more time with different
parameters. Before this attempt, it clears error with g_clear_error(), a function that frees the GError structure
and resets the pointer to NULL.

If there is something in error after this second try, indicating that something still isn't working right, the
program gives up. Instead of trying any more blues_improvise() calls, it uses a default filename
("clapton—-1966.wav") so that blues_play() can do its thing.

WarningAfter you use a GError * structure, immediately deallocate it and reset the pointer. GError-enabled
functions can't use the same pointer to several errors at the same time; there's space for only one

1.4.8 Exception Handling with Error Reporting 32

The Official GNOME 2 Developer's Guide

error. As mentioned earlier, your program will have a memory leak if you do not free the GError
memory.

Defining Your Own Error Conditions
To use the GError system to report errors in your own functions, do the following:

1. Define an error domain by creating an appropriately named macro that expands to a uniqgue GQuark
value.

2. Define all of the error code symbols with an enumeration type.

3. Add a GError ** argument at the end of each of the functions where you want to use GError (that is,
this argument is a pointer to a pointer to a GError structure). If the function uses variable arguments,
put this parameter just before the va_args list (...).

4.In the places where your function has detected an error, create a fresh GError structure and fill it in
accordingly.

Here is a definition of an error domain and some codes:

/* define the error domain */
#define MAWA_DOSOMETHING_ERROR (mawa_dosomething_error_quark())

GQuark mawa_dosomething_error_quark(void)

{
static GQuark q = 0;
if (q==0)
{

g = g_quark_from_static_string("mawa—dosomething—error");

}

return(q);

}

/* and the error codes */

typedef enum {
MAWA_DOSOMETHING_ERROR_PANIC,
MAWA_DOSOMETHING_ERROR_NO_INPUT,
MAWA_DOSOMETHING_ERROR_INPUT_TOO_BORING,
MAWA_DOSOMETHING_ERROR_FAILED /* abort code */

}

Take a close look at the definition of mawa_dosomething_error_quark() in the preceding example. It creates
new quark for the error domain if none exists, but stores the result in a static variable g so that it doesn't hav
to perform any additional computation on successive calls.

This fragment illustrates how to use the new domain and codes:

void mawa_dosomething_simple(GError **error)

{
gint i;
gboolean it_worked;

<< do something that sets it_worked to TRUE or FALSE >>

if (lit_worked)
{
g_set_error(error,
MAWA_DOSOMETHING_ERROR,
MAWA_DOSOMETHING_ERROR_PANIC,

1.4.8 Exception Handling with Error Reporting 33

The Official GNOME 2 Developer's Guide

"Panic in do_something_simple(), i = %d", i);
}
}

This function "does something," and if it fails, it uses g_set_error() to set the error condition before it returns.
This function takes the error pointer address as its first argument, and if that isn't NULL, sets the pointer to ¢
newly allocated GError structure. The g_set_error() function fills the fields of this structure with the third and
fourth arguments (the error domain and code); the remaining arguments are the printf() format string and a
parameter list that become the GError's message field.

If you want to use the error code from another function, you need to take special care:

void mawa_dosomething_nested(GError **error)

{
gint i;
gboolean it_worked;
GError *simple_error = NULL;

<< do something >>

if (lit_worked)
{
g_set_error(error,
MAWA_DOSOMETHING_ERROR,
MAWA_DOSOMETHING_ERROR_PANIC,
"Panic in do_something_nested(), i = %d", i);
return;

}

do_something_simple(&simple_error);
if (simple_error != NULL)
{

<< additional error handling >>

g_propagate_error(error, simple_error);
}
}

In mawa_dosomething_nested(), a similar error initialization occurs if the first part of the function fails.
However, this functoin goes on to call do_something_simple() if the first part worked. Because the function
can set an error condition, it would make sense to send that error condition back to the original caller. To do
this, the function first collects the do_something_simple() condition in simple_error; then it uses
g_propagate_error() to transfer the GError structure from simple_error to error.

WarningNever pass a GError ** pointer that you got as a parameter to any other function. If it happens to be
NULL, your program will crash when you try to dereference (access) anything behind it.

To send an error obtained from a function to some other place, use
g_propagate_error(error_dest, error_src)
Here, error_dest is the destination of the error as a GError **, and error_src is the source as GError *. If the

destination isn't NULL, this function simply copies the source to the destination. However, if the destination i
in fact NULL, the function frees the source error.

1.4.8 Exception Handling with Error Reporting 34

The Official GNOME 2 Developer's Guide

You might have noticed by now that GError tries hard to achieve transparency with respect to NULL, so that
you don't have to worry about memory leaks or extra GError pointers when you don't care about the specific
nature of the error. In addition, if one of your functions encounters NULL as the error condition, you can take
this as a hint that the user doesn't desire any special error treatment and perhaps wants the function to patc
the problem as much as possible.

You should always keep in mind that GError is a fairly workable tool for dealing with exceptions, but only if
you stick to the conventions.

[HIThanks to Roman Maurer for this example.

2lif you compile this program, disable your optimizer so that it doesn't eliminate this loop.

1.5 Data Structures

GLib has a number of standard implementations for common data structures, including lists, trees, and hast
tables. As is the case for other GLib modules, the names for each data type's functions share a common pre
(for example, g_list_ for lists).

1.5.1 Strings

The standard fixed—length, NULL-terminated strings in C are occasionally error prone, not terribly easy to
handle, and not to everyone's taste. Therefore, GLib provides an alternative called GString, similar to the
length—tracked string in most Pascal implementations. A GString data structure grows upon demand so that
there's never a question of falling off the end of the string. GLib manages its length at all times, and therefor
it doesn't need a special terminating character when it contains binary data. GLib functions that use this dat:
type begin with g_string_.

Note The processing functions for GLib lists, arrays, and strings use a pointer to the data structure as their
first parameter and return a pointer to the data structure as their return value. A typical statement migh
look like this:

foo = g_string_do_something(foo, bar);

You should always remember to reassign the pointer to whatever the function returns, because you can lose
track of the data if the function decides to alter its memory location.

This code shows how to create and initialize the GString type:

#include <glib.h>

GString *s1, *s2;

sl = g_string_new("Shallow Green");
s2 = g_string_sized_new(50);

s2 = g_string_assign(s2, "Deep Purple");
g_print("%s\n", s2->str);

Here, g_string_new() takes a normal C string as a parameter and returns a pointer to a new GString string.
the other hand, if you want to assign a C string to a GString string that already exists, use

1.5 Data Structures 35

The Official GNOME 2 Developer's Guide
string = g_string_assign(string, c_string);
The str field in GString points to the current contents of the string. As illustrated in the preceding example,
you can use it just as you would a regular C string. GLib manages the NULL terminator for you.
WarningThe str field is read only. If you manage to write something to it, don't expect to be able to get it
back or that your program will function in any meaningful sense. The value changes between
g_string_*() calls.
If you have a fairly good idea of how much text you're going to store in a GString structure, use
g_string_sized_new(size)
to reserve size bytes in advance. This can save some time later if you have a string that slowly grows.
As mentioned earlier, a GString string can contain binary data, including NULL bytes. Naturally, when you
initialize these strings, you need to specify the length of the data along with the data itself, because there is
universal terminating character. To allocate such a string, use
g_string_new_len(initial_data, length)
Adding Characters
All of the functions below return GString *:

 g_string_append(GString *gstring, const gchar *str)

Adds a str value to the end of gstring.
e g_string_append_c(GString *gstring, gchar c)

Adds c to gstring.
 g_string_append_unichar(GString *gstring, gunichar c)

Adds the Unicode character c¢ to gstring.

If you want to insert something at the very beginning of a string, use the g_string_prepend functions; their
names are otherwise as described in the preceding list.

The g_string_insert functions are the same, except that they take an additional index argument (for the inde
of where to insert in the string; the first index is 0):

 g_string_insert(GString *gstring, gssize pos, const gchar *str)
e g_string_insert_c(GString *gstring, gssize pos, gchar c)
 g_string_insert_unichar(GString *gstring, gssize pos, gunichar c)

The following code demonstrates five of these functions on a string called s1.

sl = g_string_assign(s1, "ar");
sl = g_string_append(s1, "gh");
sl = g_string_prepend(sl, "aa");
sl = g_string_prepend_c(s1, 'A");

1.5.1 Strings 36

The Official GNOME 2 Developer's Guide
sl = g_string_insert(s1, 4, "rr");

g_print("%s\n", s1—>str); [* prints "Aaaarrrgh" */
To insert binary data into a GString string, use these functions:

 g_string_append_len(GString *gstring, gssize pos, const gchar *str, gssize length)
 g_string_prepend_len(GString *gstring, gssize pos, const gchar *str, gssize length)
 g_string_insert_len(GString *gstring, gssize pos, const gchar *str, gssize length)
Removing Characters
You can pull characters out of a GString string at an arbitrary location with
g_string_erase(string, index, num_to_remove)
To chop a string down to a certain length, use

g_string_truncate(desired_length)

where desired_length is the final length of the string. If you try to truncate a string to a size that is actually
larger than the string, nothing happens. If, however, you also want the string's allocated size to grow to that
length, this function can truncate and expand:

g_string_set_size(desired_length)
Note The new data at the end of such a newly expanded string is undefined. This result typically doesn't mal

a difference in practice, because GLib terminates the original string with a NULL byte.
Here are some examples of these functions in action:

sl = g_string_assign(s1, "Anyway");
sl = g_string_erase(sl, 4, 1);

/* s1 should now be "Anywy" */

sl = g_string_truncate(s1, 3);

g_print("%s\n", s1—>str); /* prints "Any" */
Miscellaneous String Functions
The following are miscellaneous string functions:
 g_string_equal(stringl, string2)
Compares stringl and string2 and returns TRUE if they match. Note that this function is not like
stremp().

* g_string_hash(string)

Returns a 31-bit hash key for string. See Section 1.5.5 for more information on hash keys.
 g_string_printf(string, format, ...)

Similar to sprintf(), except that it stores the output in GString string. The return value is a GString
string and like the other string manipulation functions.

1.5.1 Strings 37

The Official GNOME 2 Developer's Guide

 g_string_append_printf(string, format, ...)

Same as the preceding function, but appends the result to string instead of replacing the previous
value.

Deallocating Strings

Deallocate GString string with
g_string_free(string, free_orig)

Here, free_orig is a gboolean value that indicates whether the string should be completely deallocated. If yo
do want to return all of the data to the free memory pool, g_string_free() returns NULL. However, if you wan
to keep the actual string data in memory, use FALSE as free_orig; the function returns the str field of the
structure that you just destroyed. Just remember that you're now responsible for deallocating that data as w
with g_free(). Here are two examples:

gchar *orig_str;

orig_str = g_string_free(s1, TRUE);

/* s1 and all of its fields are now gone;
orig_str is NULL */

orig_str = g_string_free(s2, TRUE);

/* slis gone;
orig_str points to its old str field */

1.5.2 Lists

One of the simplest but most important data structures is the linked list. Implementing linked lists along with
their elementary operations is more or less a finger exercise for experienced programmers.

That doesn't mean that their implementations are bug free, though, and who wants to write yet another
linked-list library? GLib provides a GList data type and functions for doubly linked lists. (It also provides a
GSList data type for singly linked lists, but this book doesn't cover those.)

Creating Lists

Creating a list is easy:

#include <glib.h>

GList *list = NULL;

In all of the examples that follow, list will be the general pointer to the list or the list's handle. You must
initialize all new, empty lists to NULL.

Note There's no special function to create a list; the NULL GList pointer is all you need.
A list consists of linked elements, sometimes called nodes. Each element is a GList structure that contains ¢

untyped pointer (gpointer) to a block of data. Make sure you always know which pointer goes to an element
and differentiate it from the pointer in the element that points to the actual data.

1.5.1 Strings 38

The Official GNOME 2 Developer's Guide

You can use any type that you like; the compiler won't care as long as you use the proper type cast. Most lis
contain data of only one type; mixing types in lists requires an additional layer of bookkeeping and is
somewhat inefficient and problematic.

Note GLib manages the whole list with the pointer to the first node. However, a GList pointer also serves as
list iterator. When you program with GList structures, make sure that you keep careful track of your
pointers.

Adding List Elements

To append a node to the end of a list, use g_list_append():
gint *data_ptr;

data_ptr = g_new(gint, 1);
*data_ptr = 42;
list = g_list_append(list, (gpointer)data_ptr);

This fragment declares a new pointer data_ptr and sets it to a newly allocated data block. It then sets the
memory block to the integer 42. Then g_list_append() takes the list handle as the first argument and the dat
pointer as the second; note that you must cast the data pointer to gpointer.

Note All of the list examples in this section use integer data types.

As you might suspect from the name, g_list_prepend() operates just like the append function, except that it
places the new element at the beginning of the list instead of the end.

NoteKeep in mind that g_list_prepend() doesn't need to run through the entire list from the list handle to finc
the end, and therefore is more efficient than its appending counterpart. If you need to add a lot nodes t
list, it is often faster to prepend them and then perhaps use g_list_reverse() if they are not in the desire
order.

You can also insert elements at any arbitrary place in the list with
g_list_insert(list, data, index)

Here, list and data are as usual, but the third parameter is an index. Note that the new element goes into the
place just after index, not before. Here's an example:

GList *tmp;

/* Insert 2003 after the third element */
data_ptr = g_new(gint, 1);

*data_ptr = 2001,

list = g_list_insert(list, data_ptr, 3);

/* Find the list element that was just inserted... */
tmp = g_list_find(list, data_ptr);

/* ...and insert 2000 before that element */
data_ptr = g_new(gint, 1);

*data_ptr = 2000;

list = g_list_insert_before(list, tmp, data_ptr);

1.5.2 Lists 39

The Official GNOME 2 Developer's Guide

If you'd rather have a new element put in place before a certain element, try

g_list_insert_before(list, node, data)

Notice that the parameters are different; here, the second parameter node is an element in list, not an index
The third parameter is the new data block; it will occupy a new node preceding node.

Navigating a List
The previous example used
g_list_find(list, data)

to find the node for data in list. This function searches the list and returns a pointer to a GList node that
contains the same data block address if one happens to exist in the list (upon failure, it returns NULL). This
process is not particularly efficient, because a list may require complete traversal before the function finds (c
fails to find) a certain node.

There are several other functions for moving around a list. It's perhaps best to illustrate how they work with :
example:

GList *list, *ptr;
gint *data_ptr;
gint pos, length;

<< create a list in "list" variable >>

[* point to element at position 3 */
ptr = g_list_nth(list, 3);

/* point to the element _before_ position 3 */
ptr = g_list_nth_prev(list, 3);

/* advance to the next element in the list */
ptr = g_list_next(ptr);

/* record current position of ptr in list */
pos = g_list_position(list, ptr);

/* move back one element */
ptr = g_list_prev(ptr);

/* access the data in position 4 */
data_ptr = g_list_nth_data(list, 4);

[* record position of data_ptr */
pos = g_list_index(list, data_ptr);

/* change data in first and last elements to 42 */
ptr = g_list_first(list);

*(gint *)(ptr->data) = 42;

ptr = g_list_last(list);

*(gint *)(ptr->data) = 42;

/* also change the next-to-last element to 42 */
*(gint *)(ptr—>prev—>data) = 42;

/* record the length of the list */

1.5.2 Lists 40

The Official GNOME 2 Developer's Guide

length = g_list_length(list);
The random-access functions in the preceding program are as follows:

 g_list_nth(list, n): Returns the node at position n.

« g_list_nth_prev(list, n): Returns the node just before position n.

« g_list_nth_data(list, n): Returns a pointer to the data block of the node at position n.
« g_list_first(list): Returns the first node in a list.

« g_list_last(list): Returns the last node in a list.

Note Keep in mind that a list's first position is 0.
If you have a pointer to node in a list, you can use it as the parameter for the following functions:

« g_list_next(node): Returns the next node.
« g_list_prev(node): Returns the previous node.

These operations pertain to a hode's position (or index):

 g_list_position(list, node): Returns the position of a node in a list.

 g_list_index(list, data): Returns the position of a node in list that contains data basically, the
reverse of g_list_nth_data().

 g_list_length(list): Returns list length.

If you know what you're doing, you can move list nodes around by following the pointers that make up a
node, as the last few parts of the example code show. In addition to changing the memory behind data, you
can follow the next and prev pointers to access adjacent nodes. Notice that the preceding example uses
ptr—>prev—>data. You can use this approach only if you are absolutely sure that ptr—>prev isn't NULL.

Removing Elements

Deleting elements from a list is a little different than you might expect. Remember that you are responsible f
the management of each node's data, and just as you created space for each data block, you must also free
space when you're done with it. However, you don't have to worry about the actual nodes.

The functions for removing elements from a list are

g_list_remove(data)
g_list_remove_all(data)

Notice that they do not take an index or a pointer to a node as the node to remove; instead, they want a poil
to the target node's data block. The idea is that because you probably need to do something with the data
block anyway, you should always be able to find it after you delete a node that pointed to it.

This short example shows the functions in action:

/* create a 42 */
data_ptr = g_new(gint, 1); *data_ptr = 42;

/* place three identical 42s at the beginning of a list */
list = g_list_prepend(list, (gpointer)data_ptr);
list = g_list_prepend(list, (gpointer)data_ptr);
list = g_list_prepend(list, (gpointer)data_ptr);

1.5.2 Lists 41

The Official GNOME 2 Developer's Guide
/* remove the first 42 */
list = g_list_remove(list, (gconstpointer)data_ptr);

/* remove the rest of them */
list = g_list_remove_all(list, (gconstpointer)data_ptr);

/* free the 42 */
g_free(data_ptr);

If the list contains more than one instance of the data pointer, g_list_remove() deletes only the first node tha
contains the pointer; g_list_ remove_all() removes all of them.

Iterating Through Lists

You can run a function on every element of a list at once, similar to mapping in a language like Lisp. This is
called iteration; the GList utility is

g_list_foreach(list, func, user_data)
It's helpful to see an example first:

void print_number(gpointer data_ptr, gpointer ignored)

{
g_print("%d ", *(gint *)data_ptr);
}

g_list_foreach(list, print_number, NULL);

As usual, list is a list. func is a function with a prototype matching GFunc, and user_data is an untyped
pointer. The GFunc definition is

typedef void (*GFunc) (gpointer data, gpointer user_data);

When you put everything in this example together, g_list foreach() steps through each element e of list,
running print_number(e—>data, NULL). Notice that_the GType function takes the data of the element as the
data argument, not the element itself. The second argument corresponds to the user_data parameter of
g_list_foreach(). In this example, it is NULL and completely ignored by print_number().

This example does involve user_data:

void plus(gpointer data_ptr, gpointer addend_ptr)
{

*(gint *)data_ptr += *(gint *)addend_ptr;
}

gint *num_ptr;

/* Add 42 to each element */

num = 42;

num_ptr = (gpointer)#
g_list_foreach(list, plus, num_ptr);

/* Subtract 65 from each element */
num = —65;

num_ptr = (gpointer)#
g_list_foreach(list, plus, num_ptr);

1.5.2 Lists 42

The Official GNOME 2 Developer's Guide

The only tricky part of this example is that plus accesses the actual addend data in a roundabout way; it tak
a pointer in the form of addend_ptr and then dereferences it to get the value of the addend data. The examg
here uses this approach mostly to avoid loss of sign due to type casting.

WarningWhen iterating over a list, don't add or delete any nodes from the list that is, unless you enjoy
dancing with segmentation faults.

Of course, you may find this style of iteration excessive. It's fine to iterate like this instead:

GList *I;
gint *data_ptr;

for(l = list; I; | = I->next)
{
data_ptr = |->data;

}...

Sorting Lists

If you have experience with the standard C library function gsort(), you'll have no problems with

g_list_sort(list, comp_function)

The return value is list sorted by comp_function. Here's a small example:

gint gint_compare(gconstpointer ptr_a, gconstpointer ptr_b)
{

gint a, b;

a = *(gint *)ptr_a;

b = *(gint *)ptr_b;

if (& > b) {return (1); }

if (a == b) { return (0); }

/* default: a < b */

return (-1);

}

list = g_list_sort(list, gint_compare);

Here's the type definition for the comparison function:

typedef gint (*GCompareFunc) (gconstpointer a, gconstpointer b);

To be specific, it takes two pieces of data as parameters (we'll call them a and b) and returns one of the

following:

* Avalue lessthan O if ais less than b
«Qifaisequaltob
» A value greater than O if a is greater than b

As was the case with iteration, this function receives the elements' data block pointers as its parameters.

1.5.2 Lists 43

The Official GNOME 2 Developer's Guide

A second list sorting variant allows you to pass additional data to a comparison function. To use it, call
g_list_sort_with_data(list, compare_func, user_data)

In this case, the comparison function has the GCompareDataFunc type and takes an additional data pointer
argument.

Miscellaneous List Operations

Three functions take care of a few odds and ends with respect to lists:

GList list2 = NULL;

/* copy list into list2 */
list2 = g_list_copy(list);

/* append list2 to the end of listl */
list = g_list_concat(list, list2);
list2 = NULL;

[* reverse list */
list = g_list_reverse(list);

 g_list_copy(list)
Creates a new copy of list and returns the copy.

Warning This function creates copies of the nodes but does not copy the data blocks. Keep track of
that memory.
« g_list_concat(list, list2)

Appends list2 to list and returns the result. This function does not make copies of any nodes; it uses
the existing nodes. Therefore, be careful what you pass, and set the second list to NULL after runnin
this function.

e g_list_reverse(list)

Reverses the order of the nodes list.
Deallocating Lists

To return all of a list's nodes to the free memory pool, use g_free_list(list). Use this deallocation function onl
on the list's first element.

WarningKeep in mind that GLib has no idea how you created the data blocks of your list elements; you're
responsible for them and any memory holes that might have to do with them. If you're sure that eac
data block appears only once in the list, you can come up with a solution using g_list_foreach(). Jus
make sure you know what you're doing.

1.5.3 Arrays

GLib arrays (GArray) are like their C counterparts, except that they don't have a fixed size. They are much
faster than GList structures for random access, but the potential cost of inserting data at various points withi
the array is higher, because they are just a set of contiguous blocks of memory in the actual implementation

1.5.2 Lists 44

The Official GNOME 2 Developer's Guide

You can create an array with no particular starting size, or if you have an idea of how much space you need
you can preallocate it:

#include <glib.h>
GArray *array, *array2;

[* array of integers, unspecified size */

array = g_array_new(TRUE, /* use null terminator */
FALSE, /* don't blank memory */
sizeof(gint)); /* element size */

/* array of unsigned chars, size 50 */

array2 = g_array_sized_new(FALSE, * no null terminator */
TRUE, [* zero memory */
sizeof(guchar), /* element size */
50); /* create space for 50 */

Create an array with one of these functions:

g_array_new(null_terminated, clear, element_size)
g_array_sized_new(null_terminated, clear, element_size, reserved_size)

Here, null_terminated indicates the use of a NULL terminator, clear tells the function to zero out the memory
before returning the array, and element_size is the byte length of each element in the array; reserved_size i
g_array_sized_new() is the array's initial size. Upon success, these functions return the newly allocated arre

Note It doesn't make too much sense to set the first two parameters to TRUE, because if you want to termin
your array with NULL, you don't want to have any NULL bytes that aren't actually the end of the array.

To access an element in an array, use the macro
g_array_index(a, type, i)

where a is the array, type is the array's element type, and i is the index. Because this is a macro, you can w
code like so (for example, to set the element at index 1 to 37):

g_array_index(array, gint, 1) = 37;

WarningThis looks quite wrong in many ways, and you do need to be careful. In particular, you must be
absolutely sure that the index exists in your array. Look at the len field of an array to check its lengt
(for example, array—>len in the preceding example). Also, although g_array_sized _new()
preallocates space, its initial length is still zero.

To create elements in a GArray, you heed to add them with a function or use g_array_set_size().

Adding Elements

To add things to your GArray, you need to fill a regular C array with your data. You can add elements to an
array in three places:

At the end: Use g_array_append_vals().
« At the beginning: Use g_array_prepend_vals().

1.5.3 Arrays 45

The Official GNOME 2 Developer's Guide

« In the middle: Use g_array_insert_vals().

This code illustrates how these functions work:

gint c_array[3];

c_array[0] = 42; c_array[1] = 23; c_array[2] = 69;
/* add the elements in c_array to the end of the GArray array */
array = g_array_append_vals(array, (gconstpointer)c_array, 3);

/* insert 220 and DEADBEEF at index 1 */

c_array[0] = 220; c_array[2] = Oxdeadbeef;
array = g_array_insert_vals(array, 1, (gconstpointer)c_array, 2);

There is a way to add a single item to an array, but you must have a variable that contains the data handy.
Unfortunately, the names are confusing they are like the three macros in the preceding code, but end in va
instead of vals. Because these are macros (and hence not terribly smart), you can't use a constant like 42. |
any case, here is a demonstration of g_array_prepend_val():

gint tmp;
tmp = 380;

/* insert 380 at the beginning of the array */
array = g_array_prepend_val(array, tmp);

Note Of the functions here, only g_array_append_vals() has reasonable performance. The others must shift
memory around; therefore, the characteristics of GArray in this respect are the opposite of GList.
If you want to create multiple elements in an array at once, use

g_array_set_size(array, size)
You can then set the individual elements with g_array_index().
Deleting Elements

You can remove elements in two ways. You can use g_array_remove_index(), which does what you would
expect: It pulls an element at a given index out of the array:

/* delete element at index 2 */
g_array_remove_index(array, 2);

This approach isn't terribly quick, so there is an alternative that replaces the deleted element with the last
element in the array. However, if you care about the order of your array, this isn't for you:

/* replace index 1 with last element and shorten array */
g_array_remove_index_fast(array, 1);

Sorting Arrays

If you perhaps called one too many g_array_remove_index_fast() functions, you can use g_array_sort() anc
g_array_sort_with_data(). These functions work just like their g_list_sort* counterparts: see Section 1.5.2.

1.5.3 Arrays 46

The Official GNOME 2 Developer's Guide
Deallocating Arrays
As was the case with GString (see Section 1.5.1),
g_array_free(array, preserve)

the preserve Boolean value indicates whether you want to preserve the actual data in array or not. It returns
pointer to the data (type: gchar *) if you use TRUE as the second parameter; you are responsible for
deallocating this later with g_free().

1.5.4 Trees

Another classic data structure is the tree. There are more types of trees than you probably want to know ab
(splay trees, threaded trees, red—black trees, and so forth), and if you really want to know about them, have
look at [Knuth] and [Cormen]. However, if you just want to use one of them, GLib's GTree type is a complete
implementation of balanced binary trees.

Creating Trees

One of the most noteworthy things about GTree is that it doesn't just contain simple elements like GList and
GArray. A leaf of a (search) tree not only contains some data, but also a key corresponding to that data. The
key is available to help GLib sort through the tree and find the data. For example, you could use the custom
number as a key in a customer database, a telephone number as the key for telephone information, the nan
a participant spelled phonetically well, you get the idea.

You must define a comparison relation for your keys (greater or less than) so that the tree can be balanced.
you define it as GCompareFunc (see Section 1.5.2), you can call

g_tree_new(compare_func)

to create your tree. However, if you opt for GCompareDataFunc instead, use

g_tree_new_with_data(comp_func, comp_data)

One step further is

g_tree_new_full(comp_func, comp_data, key_destroy_func, value_destroy_func)

which can also take care of your data's memory management with a pair of GDestroyNotify function
definitions. You have to create these functions yourself; GLib calls value_destroy_func() when it needs to
deallocate the data in a node, and key_destroy_func when it needs to free a node's key. It's a simple functic
prototype just a void function that takes a single untyped pointer as a parameter:

typedef void (*GDestroyNotify) (gpointer data);
NotelIn all of the functions described in this section, when you see something like "this or that will be freed,"
it means that GLib will do it, and only on the condition that you created the tree with g_tree_new_full().

Otherwise, you need to worry about it yourself. You probably don't want to think about that, though,
because trees can get complicated.

1.5.3 Arrays 47

The Official GNOME 2 Developer's Guide

As usual, GLib manipulates only the keys and data with untyped pointers. Furthermore, you do not reassign
your GTree variables after every function call, as with the other types.

Enough talk; let's look at some actual code.

#include <glib.h>

GMemcChunk *key_chunk;
GTree *tree;

/* compare gints; ignore extra data parameter */
gint key_cmp(gconstpointer a_ptr, gconstpointer b_ptr, gpointer ignored)

{
gint a, b;
a = *(gint *)a_ptr;
b = *(gint *)b_ptr;

if @<b) {return(1);}
if @==b) {return (0); }
[*ifa>b* return (-1);

}

void free_key(gpointer key)
{

g_mem_chunk_free(key_chunk, key);
}

void free_value(gpointer value)

g_string_free((GString *)value, TRUE);

/* prepare memory for keys and values */
key_chunk = g_mem_chunk_create(gint, 1024, G_ALLOC_AND_FREE);

[* create tree */

tree = g_tree_new_full(key_cmp,
NULL, /* data pointer, optional */
free_key,
free_value);

This program draws storage for the tree's keys from memory chunks and uses GString strings for its values.
The three functions are the comparison, key deallocator, and value deallocator. You can see that once you
have these three utility functions, you need only run a single function g_tree_new_full() to create the tree.
Adding and Replacing Nodes

Insert a new node into a tree with key key and value value with

g_tree_insert(tree, key, value)

If key already exists in the tree, this function replaces the old value, and if the tree was created with
deallocation functions, returns that value to the memory pool. It does not free the old key; instead, it frees th

key that you just passed.

Therefore, you need to be careful if you want to use the key that you passed to g_tree_insert() after the
function call. You may want to use this instead:

1.5.4 Trees 48

The Official GNOME 2 Developer's Guide

g_tree_replace(tree, key, value)

It works just the same as insertion, but when it finds a node with a matching key, it deallocates the old value
and the old key, replacing them with the new ones. Of course, if you use this version, you must make sure tl
the old key hasn't wandered somewhere else in your program.

Because both functions have pitfalls, the easiest way to avoid a core dump when using these functions is to
reset any pointers to the key and value after placing them in a tree.

Here is an example:

gint *key_ptr;

GString *value;

/* insert 42 into the tree */

key_ptr = g_chunk_new(gint, key_chunk);
*key_ptr = 42;

value = g_string_new("forty—two");

g_tree_insert(tree, key_ptr, value);

To create the node, you need to get a new memory chunk for the key and then a new GString for the value.
Notice how this works in tandem with free_key() and free_value(), discussed earlier.

Finding Nodes

To find a node in tree matching key, use

g_tree_lookup(tree, key)

The return value is a pointer to the matching node's value if successful, or NULL if key isn't in the tree.
There's a slightly more complicated version:

g_tree_lookup_extended(tree, key, key_ptr_addr, value_ptr_addr)

Upon a match, this function sets the pointer behind key ptr_addr to the key of the matching node, and
likewise with value_ptr_addr and the matching value. The return value is TRUE if there's a match, and
FALSE otherwise. Use this function only if you need to access the key in the tree for some reason (for

example, if you didn't define a function to deallocate keys and need to do it by hand).

Warning With g_tree_lookup_extended(), you can change keys that are in trees. Don't do
this; GLib's tree navigation system won't be able to cope with the change.

Here are the functions in action:

gint *key_ptr, *key_ptr2;

/* look up 37 in the tree */

key_ptr = g_chunk_new(gint, key_chunk);
*key_ptr = 37,

value = (GString *) g_tree_lookup(tree, key_ptr);

1.5.4 Trees 49

The Official GNOME 2 Developer's Guide

if (fvalue)

{
g_print("%d not found in tree.\n", *key_ptr);

}else {
g_print("%d found; value: %s.\n", *key_ptr, value—>str);

}

/* See if 42 is in there */

*key_ptr = 42;

if (lg_tree_lookup_extended(tree, key_ptr,
(gpointer)&key_ptr2,
(gpointer)&value))

{
g_print("%d not found in tree.\n", *key_ptr);

}else {
g_print("%d found; value: %s.\n", *key_ptr, value—>str);

}

g_mem_chunk_free(key_chunk, key_ptr);

Warninglf you choose not to provide key and value memory management functions when you create the tre
you need to know exactly what the keys and values look like in memory, and it's particularly
important to keep track of your keys. For example, keys with pointers to any other data invite
memory leaks.

Deleting Nodes

To completely remove a node from a tree, including its key and value, use

g_tree_remove(tree, key)

However, if you want to preserve the key and value, or you want to remove a node from a tree only
temporarily, use

g_tree_steal(tree, key)

However, make sure that you have pointers to the original key and value before you run this, or you'll lose
track of them. One way to do this is with g_tree_lookup_extended(); the following code builds on the functiol
call that you saw earlier:

/* pull a node from the tree */
g_tree_steal(tree, key_ptr2);

/* key_ptr2 and value contain the key and value (see above)—-
now we'll throw them right back into the tree */
g_tree_insert(tree, key_ptr2, value);

/* this time get rid of the node for good */
g_tree_remove(tree, key_ptr2);

Traversing a Tree

As with lists and arrays, you can iterate over a GTree tree. This is called traversing the tree, and you typical
want to do it in the sort order of the nodes' keys. Use

g_tree_foreach(tree, func, data)

1.5.4 Trees 50

The Official GNOME 2 Developer's Guide

to call func on every node in tree. Note that func has the GTraverseFunc definition:

typedef gboolean (*GTraverseFunc)
(gpointer key, gpointer value, gpointer data);

The traversal goes in the order of the keys, with the smallest element first. The GTraverseFunc can halt the
traversal at any time by returning TRUE; otherwise, it returns FALSE to keep things moving (you could use
this feature when looking for something). Here's an example that prints every node in the tree:

/* print a node in a traversal */
gboolean print_node(gpointer key, gpointer value, gpointer ignored)

{
g_print("[%d %s] ", *(gint *)key, ((GString *)value)—>str);
return FALSE;

}

g_tree_foreach(tree, print_node, NULL);

This example uses the third parameter of the GTraverseFunc:

/* add the keys; ignore the value */
gboolean sum_keys(gpointer key, gpointer value_ignored, gpointer sum)

{
*(gint *)sum += *(gint*)key;
return FALSE;

}

gint sum = 0;

g_tree_foreach(tree, sum_keys, &sum);

Tree Statistics

The following functions report on the size of a tree:
* gint g_tree_nnodes(tree)

Returns the total number of nodes in tree.
* gint g_tree_height()

Returns the height of tree.
Removing a Tree

To return a tree and its nodes to the free memory pool, use
g_tree_destroy(tree)
Notice that this function doesn't end in _free like many of the other functions. If you provided deallocation

functions for keys and values, this function also completely frees the keys and values. Otherwise, you're
responsible for that memory.

1.5.4 Trees 51

The Official GNOME 2 Developer's Guide
1.5.5 Hash Tables

The last GLib data structure that this book covers is another perennial favorite: the hash table. These tables
assign keys to values, and using an efficient internal representation, allow you to quickly access values usin
the key. The GLib data type for a hash table is GHashTable.

As with trees, you can choose any data type that you like for the keys and values of hash tables. An entry in
hash table consists of two untyped pointers: one for the key and the other for the type. GNOME software
makes broad use of GHashTable because it can associate data between any tilo types.

1.5.6 Creating Hash Tables

Use
g_create_hash_table_new(hash_func, equal_func)

to create a new hash table, returning the result as GHashTable. The two parameters are functions. The first
the hash function, with a type of GHashFunc. Following this is an equality test function (type GEqualFunc)
that determines whether two keys are equal. Although you can probably use the built-in default functions, it
never hurts to know the types of the following parameters:

typedef guint (*GHashFunc)(gconstpointer key);

typedef gboolean (*GEqualFunc)(gconstpointer a, gconstpointer b);

The equality function is simple; it takes two keys as parameters and, if they are equal, returns TRUE, or
FALSE if they aren't equal.

Hash functions are a little trickier. They take a key as input and (efficiently) return a hash value, a guint
integer that characterizes the key in some way. This isn't a unique mapping like a quark; you can't get a key
back from a hash value. The important part about hash values is that they return values that are well
distributed throughout the guint domain, even for similar keys.

If you want to know about the theory of hash values and algorithms, have a look at the algorithms books in
the bibliography. For the most part, you will probably find that one of the following default hash functions fits
your needs:

» g_str_hash(string) processes gchar * string into a hash value. If your keys are strings, use this
function.

e g_int_hash(int_ptr) treats int_ptr as a pointer to a gint value and generates a hash value from the gir
value. Use this function if your keys are of type gint *.

« g_direct_hash(ptr) uses ptr as the hash value. This function works when your keys are arbitrary
pointers.

If you use one of these hash functions, there are corresponding key equality functions at your disposal:
g_str_equal(), g_int_equal(), and g_direct_equal().

Here is an example:

GHashTable *hash1;

1.5.5 Hash Tables 52

The Official GNOME 2 Developer's Guide

hashl = g_hash_table_new(g_direct_hash, g_direct_equal);

You are responsible for the memory management with hash tables created with g_hash_table_new().
However, just as in the case of trees in Section 1.5.4, the

g_hash_table_new_full(hash_func, equal_func, key_destroy, value_destroy)
function can deallocate your hash table entries automatically if you provide it with GDestroyNotify functions:

GHashTable *hash2;
hash2 = g_hash_table_new_full(g_str_hash, g_str_equal, g_free, g_free);

In this example, the keys and values of the hash table could be dynamically allocated C strings, because
g_free() returns these to the free memory pool.

Note You can combine a string and integer hash values with XOR into a hash function like this:

struct vpair

{
gchar *str;
int value;

I3

GHashFunc (struct vpair *p) {
return(g_str_hash(p—>str)*p—>value);

}

Inserting and Replacing Values

Most GLib programmers add new values to a hash table with this function:

g_hash_table_replace(hash_table, key, value)

Here is an example:

SomeType *key;
AnotherType *value;

key = g_new(SomeType, 1);
value = g_new(AnotherType, 1);

<<..>>

g_hash_table_replace(hashi,
key, [* key */
value); [* value */

g_hash_table_replace(hash2,
g_strdup("foo"), /* key */
g_strdup("bar")); /* value */

As with many other GLib functions, the key and value are untyped pointers. If the key is already in the hash

table, this function replaces the value corresponding to that key. However, if you created the table with
deallocation functions to manage the key and value memory, g_hash_table replace() frees the old key's

1.5.6 Creating Hash Tables 53

The Official GNOME 2 Developer's Guide

memory because it isn't needed.

There is a seldom-used alternative to g_hash_table_replace():

g_hash_table_insert(hash_table, key, value)

This function works just like g_hash_table_replace(), except that it deallocates the new key if an old key in tl
hash table matches the new key. Therefore, you must be careful if you still have a pointer to key somewhere

If you want to be completely safe, NULL out any pointers to the key (and value) that you add with either of
these functions.

Note The difference between these two functions with respect to the actual content of your keys is an issue
only when the key equality function doesn't take all of the data in the key into account. If your keys use
a simple data type, such as an integer or string, there is no difference.

To find out how many entries are in a hash table (that is, the number of key—-value pairs), use

g_hash_table_size(table)

Finding Values

The easiest way to find something in a hash table is to use

g_hash_table_lookup(table, key)

The return value is a pointer to the value, or NULL if the key isn't in any of the hash table's entries.

gchar *key, *value;

value = (gchar*)g_hash_table_lookup(hash2, "foo");
if (value)

g_print("hash2{\"foo\"} = %s\n", value);
}else {
g_print("foo isn't in the hash table\n");

}
If you need access to the keys and values in the hash table, try
g_hash_table_lookup_extended(table, key, key _addr, ptr_addr)

Here's an example:

if (g_hash_table_lookup_extended(hash2,
"foo",
(gpointer)&key,
(gpointer)&value))
{
g_print("hash2{\"%s\"} = %s\n", key, value);
}else {
g_print("foo isn't in the hash table\n");

}

1.5.6 Creating Hash Tables 54

The Official GNOME 2 Developer's Guide

This function takes two pointer addresses as the third and fourth parameters: one for a key and the other fol
value. If the given key (the second parameter) is in the hash table, this function sets those pointers to the ke
and value inside the hash table. It returns TRUE upon success.

This function is useful when you need to deallocate your key and value manually.

Warningg_hash_table lookup_extended() gives you direct access to the keys in the table entries, meaning
that you also have the ability to change them around. That's a really bad idea you risk inaccessible
entries and key duplication.

Deleting Entries

To delete an entry in a hash table, use

g_hash_table_remove(table, key)

where table is the hash table and key is the entry's key. When successful, this function returns TRUE, and if
you created the hash table with automatic key and value deallocation functions, it also frees the key and val

memory. Note that this procedure does not try to deallocate the key that you gave as a parameter, so you C:
write statements with constants, such as this:

g_hash_table_remove(hash2, "this");

You can also prevent the GLib hash table from trying to deallocate the key and value with
g_hash_table_steal(table, key)

Iterating Through Hash Tables

You can call a function on every single entry in a hash table, just as you can for lists, arrays, and trees. Thel
are three ways to iterate:

« void g_hash_table_foreach(GHashTable *table, GHFunc func, gpointer user_data)

Runs func on every entry in table. This function passes user_data as the third parameter to func.
« void g_hash_table_foreach_remove(GHashTable *table, GHRFunc func, gpointer user_data)

Same as the preceding function, but removes the entry if func returns TRUE. This approach includes
running any deallocation functions on the key and value that you might have specified when you
created the hash table. This function is useful if you need to filter a hash table.

« void g_hash_table foreach_steal(GHashTable *table, GHRFunc func, gpointer user_data)

Same as the preceding function, but when removing entries, this function doesn't ever try to dealloce
the key and data. This function is useful for moving entries to other hash tables or data structures.

Here is the type definition for GHFunc (GHRFunc is the same, except that it returns gboolean):
typedef void (*GHFunc)(gpointer key, gpointer value, gpointer user_data);

The following is a short example. If you need to see something that involves the user_data parameter, checl
out the example for trees_in Section 1.5.4.

1.5.6 Creating Hash Tables 55

The Official GNOME 2 Developer's Guide

void print_entry(gpointer key, gpointer data, gpointer user_data)
{ [* user_data not used */
g_print("key: %-10s value: %-10s\n",
(gchar *)key, (gchar *)data);
}

g_print("Hash table entries:\n");
g_hash_table_foreach(hash2, print_entry, NULL);

Deleting Hash Tables

To completely remove a GHashTable, call

g_hash_table_destroy(hash_table)

This approach includes the key and value data if you supplied deallocation functions when you created the
hash table. Otherwise, you'll have to take care of the key and value in each entry yourself;
g_hash_table_foreach() is a handy means of doing this.

BlThis sets GLib hash tables apart from the hash tables (or dictionaries) of many interpreted languages; tho:
typically allow only strings as keys.

1.6 Further Topics

GLib has many capabilities that aren't covered here because there just isn't enough space. These include tt
following:

« Date and time functions: Would you like to know how many days elapsed between the end of the
Thirty Year War and your grandmother's birthday? GLib makes quick work of this type of problem
with its conversion utilities.

» Message logging: Behind g_message(), g_error(), and their friends are several macros that send a I
domain and log level along with the usual parameters to the g_log() function. You can define new loc
domains and log levels, and with g_log_set_handler(), what to do when a message comes through.

 Quicksort: g_gsort_with_data() is like C's gsort() function, but accommodates an additional data
parameter.

« Singly linked lists: GSList saves a few bytes per node if you don't need to be able to navigate
backward in the list.

« Pointer arrays: If you just want an array of gpointer elements that can grow automatically like
GArray, GPtrArray offers a simpler API without all of the element size parameters.

 Byte arrays: GByteArray arrays are identical to pointer arrays, but with guint8—size elements.

« String chunks: For efficient allocation and cleanup of a large number of C strings (not GString
strings), GStringChunk is available with an API like those of memory chunks.

« N-ary trees: If you want trees where a node can have more than two children, GLib enables you to
build them yourself with the GNode data type.

* Queues: The popular first in, first out (FIFO) approach is available with GQueue. There are
additional routines for double—ended queues.

« Shell and file utilities: GLib has a humber of facilities for working with files, pipes, and processes.

» Threads: GLib offers portable implementations of threads, thread pools, and interprocess
communication (mutual exclusion, async queues, and so on).

1.5.6 Creating Hash Tables 56

The Official GNOME 2 Developer's Guide

« Dynamic module loader: GModule is a system for loading shared objects into running processes. If
you want your program to support plug-ins, take a look at this.

As you can see, GLib is a powerful tool that can't be completely documented in a book like this. However, al

experienced programmer can easily get a good sense of how to use everything else by rooting around in the
extensive API reference documentation that comes with GLib.

1.5.6 Creating Hash Tables 57

Chapter 2: GODbject

Overview

Contrary to any grousing you may have heard, GNOME is just as object-oriented as other modern GUI
platforms. The primary difference between GNOME and its "competitors" is that the GNOME library source
is in plain C, so you can also program it in C. Libraries such as GTK+ and GNOME rest on the GObject
object system. By contrast, other systems rely on the object-oriented features of their programming
languages, as in the case of KDE's C++ implementation.

Note This chapter is dry and dense; it covers several complex topics in a relatively small space. This chapte
is the second in the book because it reflects aspects of the entire GNOME API. You don't need to fully
comprehend this material to move on to the next chapters, especially because many of the techniques
appear throughout the book. At the very least, learn how to create objects, manipulate properties, and
install signal handlers (Sections 2.5, 2.5.1, and 2.6.5). You do not need to know how to create your ow
classes.

If you are already familiar with object—oriented programming and its terminology, you can skip the first
section and go right to the implementation details in Section 2.2.

2.1 Object—Oriented Programming Basics

Most programmers agree that programs consist of algorithms and data structures [Wirth]. That's all fine and
good, but experience over the years has indicated that algorithms tend to depend on data structures, rather
the other way around.

In other words, nearly every algorithm operates on a specific data structure. If a clearly written C program
defines data structures such as struct Flipper and struct Slop, you can expect to see associated functions lik
flipper_insert(), flipper_shift(), flipper_status(), slop_create(), slop_blocksize(), and slop_destroy(). The
functions "belong" to their data structures and always take parameters of a specific data structure. You will
not be able to run flipper_status() on a Slop structure.

Take a look at the names above. You should recognize GLib's naming convention from Section 1.2. One ter
of object-oriented programming is that data types, variables of these types, and their algorithms belong
together. It's just a way of thinking, but it does help if you have tools that can help you with the day-to—day
organizational details. This tool can be the programming language itself; the most prominent object—orientec
languages are C++ and Java, and nearly all popular scripting languages offer some sort of object system, e
though not everyone chooses to use these features.

C isn't an object-oriented language by any stretch of the imagination, but that's not a problem, because the
GLib's GObiject library (libgobject—2.0) provides object—oriented programming features for C.

2.1.1 Objects as Instances of Classes

Let's get back to Flippers and Slop.

Chapter 2: GObject 58

The Official GNOME 2 Developer's Guide

You can think of the Flipper and Slop types as classes, and you can think of variables of these types as
instances of those classes. Because classes are data structures, they contain various data fields (attributes;
later in this book, you will see the term property see Section 2.4). A class also has several functions that
operate on object attributes. These are called methods, and you can just think of them as functions that are
attached to certain classes. For example, the Flipper and Slop classes have methods that start with flipper_
slop_.

An_object is a data structure in memory that conforms to the class or an instance of a class. The process of
creating an object from a class is called instantiation; you invoke the constructor of a class to create objects
You can have as many objects as you like, and you can set their attributes any way you like. For example, y
can have two objects named red_car and blue_car of the Car class, where the only difference between the 1
objects is in the color attribute.

GObject manipulates its objects with object references: typed pointers to objects that you create and invalid
with special functions. You may have more than one reference to the same object, and therefore, objects he
reference counts to keep track of their references in the currently running program. If the reference count
goes to zero, GObject detects that you no longer need the object and performs the following actions:

1. GObject enters the dispose phase to get rid of any references to other objects.
2. GObject finalizes the object, marking the memory as ready for reuse.
3. A garbage collector returns the memory to the free pool somewhere down the line.

Constructors and destructors allow custom code that runs when you create or destroy an object. Therefore,
object can be more than just a coupling of data structures and algorithms; it can represent a process. For
example, you could define FilmShort class to show an animated cartoon. When you create an object from tt
class, the constructor places the animation on your screen and starts playing the animation. Finalizing the
object stops the animation and removes it from your monitor.

2.1.2 Inheritance

Because an object belongs to a class, it has a type. This is sometimes called a membership relation; an obj
my_flipper might belong to the Flipper class because you created it with the Flipper constructor, and
therefore, the class and object have a membership relation.

Now let's assume that you need to something a little trickier; for example, you want to write a program to
manage your bloated CD collection. First, you create a CD class with several attributes, such as the storage
location (location), the title (title), and an inventory number (inv_nr). However, pedant that you are, you have
some CD-ROMs on your shelves in addition to audio CDs. Therefore, you decide on two classes, AudioCD
and CDROM. There are some differences in the attributes: AudioCD has an artist name and track list;
CDROM has an operating system and version.

Meanwhile, your CD collection grows so large that you have to store it on different planets, and therefore, yc
must add a planet attribute to both classes. Isn't it a little clumsy to add that to both classes?

Well, yes. AudioCD and CDROM share several attributes that were in your original CD class. Furthermore,
audio CDs and CD-ROMs are both CDs, so they should have a membership relation reflecting this fact. It
would make sense if AudioCD objects and CDROM objects were also CD objects.

It's possible to implement this approach. You can dig out your old CD class and define AudioCD and

2.1.2 Inheritance 59

The Official GNOME 2 Developer's Guide

CDROM as subclasses of CD. They inherit attributes from their parent class (or superclass) and add some
attributes of their own. The whole system is known as inheritance.

Subclasses also inherit methods from their parents. All of the methods from the CD class work on AudioCD
and CDROM objects; a CD method doesn't care about the specific subclass membership of an object.

You can create subclasses of subclasses. For example, CDROM could have a SoftwareCD subclass for CC
containing programs and a RecordsCD subclass for your archived documents. These subclasses would inh
their attributes and methods from CDROM and add their own. If you had a RecordsCD object called
my_disc, its membership relations would be as follows:

» my_disc is a RecordsCD object.
* my_disc is a CDROM, object.
* my_disc is a CD object.

Figure 2.1 shows the entire class hierarchy as a tree.

cb
CDROM AudioCD
SoftwareCD RecordsCD

Figure 2.1: CD class hierarchy.
If you implement RecordsCD in GObiject, Figure 2.1 isn't the complete story. The GObject system has a bas
class called GObject. Therefore, you have the following membership relations:

my_disc is a RecordsCD object.
my_disc is a CDROM oabject.
my_disc is a CD object.
my_disc is a GObject object.

See Figure 2.2 for the whole tree diagram.

2.1.2 Inheritance 60

The Official GNOME 2 Developer's Guide

GObject
l
cD
)
CDROM AudioCD
)
SoftwareCD RecordsCD

Figure 2.2: CD class hierarchy with GObject base class.

If your collection doesn't contain any exotic CD formats, every CD is a CD—-ROM (some subclass of
CDROM) or an audio CD (AudioCD). The CD class serves only for the derivation of subclasses; you
wouldn't instantiate CD objects. Such a class is called an abstract class. Some real-life examples of abstrac
classes are "building," "vehicle," and "work of art." Nothing is just a work of art, but rather, a painting,
installation, sculpture, or whatever.

Interfaces

Let's say that you've finished with your CD inventory program. Now you decide that CDs are too small and s
add some tapes and records. Organized person that you are, you decide to expand the inventory system to
include some new classes: Media as a new abstract class that has your old CD as a subclass, as well as tw
other new subclasses, Tape and Vinyl. Furthermore, these last two have their own subclasses: EightTrack,

StudioTape, EP, and LP (see Figure 2.3 for the exact positions).

o

w
[Eoted | [ndtere | [covom | (et | i
| Sebsnsto | | Recsedsco |

Figure 2.3: Media hierarchy.

With this archival business out of the way, you now want to enable a robot to retrieve audio CDs, 8-track
tapes, and records from their storage slots and play them on your designer stereo system. Therefore, the
functions that control this system must be able to deal with objects from the AudioCD, Vinyl, and

EightTrack classes. This would be practical if they all belonged to a common superclass somewhere, and
there is one: Media. Unfortunately, this class also includes objects like CD-ROMs and studio tapes, which
don't work with your fancy stereo. Therefore, you can't add the support at this level, because the whole idea
a superclass is that all of its methods and attributes are supposed to work with its subclasses.

In other object models, it's possible to define classes that inherit from several other classes at once, not just
parent class. This is called multiple inheritance, and it tends to confuse a lot of people.

GObject and many other object systems use a similar concept called an interface. In the ongoing example,

2.1.2 Inheritance 61

The Official GNOME 2 Developer's Guide

audio CDs, records, and 8-track tapes have one characteristic in common: They fit in the stereo system. In
object-oriented terminology, you would say that they all implement the same interface that is, you can play
all of them in a stereo.

Interfaces contain only methods and therefore reflect the capabilities of these objects. Typical interface nam
often end in —able. You could use Playable to label the interface to play something on the stereo. Figure 2.4
on the following page, shows the new interface's relationships.

Figure 2.4: Hierarchy of media types, with Playable interface.

All functions that work with Playable objects see the methods from only those objects that are defined in the
interface. The location of the object classes in the class hierarchy doesn't matter.

What you have just seen sounds easy enough, but now you're about to see the GObject implementation. Tt
rest of this chapter demonstrates how to define classes, create objects, and build interfaces.

2.2 Defining Classes

To put it bluntly, defining a class in GObject isn't easy. If you're used to programming languages like C++,
Java, and Smalltalk, this procedure is going to look quite awkhthHowever, you should try to look at it
from an unbiased perspective.

To use GObject, you must include the glib—object.h header file and invoke g_type_init() somewhere in your
program initialization to set up the GObject type system (GType). Keep in mind that some other function
might call g_type_init(), such as gtk_init(), as you'll see in Chapter 3.

2.2.1 Structure Definitions

A GObiject class consists of two structures. First, the instance structure (or object structure) holds the class
attributes and is the basis for an object in memory. The other structure, the class structure, contains
prototypes for certain methods and all signals that the object can provide (you will encounter signals in
Section 2.6).

For the Media class in Section 2.1.2, you could define Media as the instance structure and MediaClass as tt
class structure:

/* instance structure */
typedef struct _Media

2.2 Defining Classes 62

The Official GNOME 2 Developer's Guide

GObiject parent_instance;

guint inv_nr;

GString *location;

GString *title;

gboolean orig_package;
} Media;

[* class structure */
typedef struct _MediaClass

{

GObjectClass parent_class;

/* Signals */

void (*unpacked)(Media *media);

void (*throw_out)(Media *media, gboolean permanent);
} MediaClass;

The attributes in the instance structure include inv_nr, location, title, and orig_package (this last attribute
indicates whether the item is still in the original package). The class structure includes handler prototypes fo
two signals: unpacked and throw—out. Ignore them for now; they will reappear in Section 2.6.

Note As you may have noticed by now, there are no prototypes for methods in this class definition. As
you will see in Section 2.3, most method prototypes appear outside the class structure.

There is a parent_instance pointer at the beginning of the instance structure, as well as a corresponding
parent_class pointer in the class structure. These two definitions are necessary for inheritance; without then
you wouldn't be able do much with your objects (all classes inherit important common features from a base
GObject class).

2.2.2 Utility Macros

The following macros are practically essential for smooth operation (you could theoretically write them out b
hand each time that you wanted to use these features, but it would test your patience):

#define TYPE_MEDIA (media_get_type())

#define MEDIA(object) \
(G_TYPE_CHECK_INSTANCE_CAST((object), TYPE_MEDIA, Media))

#define MEDIA_CLASS(klass) \
(G_TYPE_CHECK_CLASS_CAST((klass), TYPE_MEDIA, MediaClass))

#define IS_MEDIA(object) \
(G_TYPE_CHECK_INSTANCE_TYPE((object), TYPE_MEDIA))

#define IS_MEDIA_CLASS(klass) \
(G_TYPE_CHECK_CLASS_TYPE((Klass), TYPE_MEDIA))

#define MEDIA_GET_CLASS(object) \
(G_TYPE_INSTANCE_GET_CLASS((object), TYPE_MEDIA, MediaClass))

These are somewhat difficult to digest at once, so let's go over them one by one. Note the ongoing differenc
between the instance and class structures.

2.2.2 Utility Macros 63

The Official GNOME 2 Developer's Guide

« TYPE_MEDIA returns the class type identifier, a GType assignment for the Media class. It calls
media_get_type() see Section 2.2.3 for more details. You'll use this macro in any place that calls fo
an object or type identifier. When you see the term (class) type identifier in this section, you need to
remember that this is different from a C type.

You will use TYPE_MEDIA when creating Media objects.

« MEDIA() is a casting macro that casts an object (the instance structure) to the Media type, or, in
other words, the Media structure. This is often simply known as a cast, like its C counterpart.

Casting macros are useful when calling a method from an object's superclass.

« MEDIA_CLASS() is another casting macro. This one operates on the class structure, returning a
casted MediaClass structure.

« IS_MEDIA() checks the membership of an object for the Media structure. It is TRUE if the object
belongs to the class, and FALSE otherwise.

* IS _MEDIA CLASS() checks the membership of a class for the MediaClass structure.

« MEDIA_GET_CLASS() yields the class structure of Media when given an object (again, an instance)
of the Media structure.

As you can see, these macros build on other macros:

« G_TYPE_CHECK _ INSTANCE_CAST(object, type_id, name) If object, a class type identifier
type_id (for example, TYPE_MEDIA), and the instance structure name match, this macro expands tc
a casted pointer to abject's instance structure for type_id. Note that matching includes super—classe:
of object.

« G_TYPE_CHECK_ CLASS CAST(klass, type_id, class_name) Same as the preceding, but for class
structure pointers.

Note name and class_name are the type names from the C structure definitions. Make sure that you
understand that these are very different from type_id, a runtime identifier for the entire class.
The preceding macros provide warnings when you attempt to make invalid casts.

« G_TYPE_CHECK_INSTANCE_TYPE(object, type_id)

Returns TRUE if object belongs to type_id's class.
« G_TYPE_CHECK_CLASS TYPE(klass, type_id)

Returns TRUE if klass belongs to type_id's class.
* G_TYPE_INSTANCE_GET_CLASS(object, klass)

Returns the class structure for object, casted as the C type class_name.

Note These macros use the parameter klass instead of class. That's_ because class is a reserved C++ keyw«
if you tried to use one of these macros in C++ source code, your program would not compile. The GLib
GTK+, and GNOME source distributions reflect this. However, with parameters to functions in regular
C code, this is not a problem, because you wouldn't use a C++ compiler on that. You can always use
class if you never plan to use C++, or if you just feel like being mean to C++ people.

To keep C++ compatibility at link time, use G_BEGIN_DECLS and G_END_DECLS to encapsulate your C
code:

2.2.2 Utility Macros 64

The Official GNOME 2 Developer's Guide

G_BEGIN_DECLS
<< header code >>

G_END_DECLS

2.2.3 Initializing Type ldentifiers

The _previous section made many references to the GObject class type identifier, with the macro
TYPE_MEDIA expanding to a media_get_type() call to return the Media class type identifier. As mentioned
before, the type identifier is an actual piece of runtime data that conforms to the GType standards.

This is perhaps easier to understand when you look at the actual definition of media_get_type():

GType media_get_type(void)

{
static GType media_type = 0;

if (Imedia_type)

{
static const GTypelnfo media_info = {
sizeof(MediaClass), [* class structure size */
NULL, /* base class initializer */
NULL, /* base class finalizer */
(GClasslnitFunc)media_class_init, /* class initializer */
NULL, [* class finalizer */
NULL, /* class data */
sizeof(Media), [* instance structure size */
16, /* preallocated instances */
NULL, /* instance initializer */
NULL /* function table */
b
media_type = g_type_register_static(
G_TYPE_OBJECT, [* parent class */
"Media", /* type name */
&media_info, /* GTypelnfo struct (above) */
0); [* flags */

}

return media_type;

}

The return value of media_get_type() is the C type GType a type of a type (if that makes any sense). This
function returns the same class type identifier every time, because the variable used to store and return the
class identifier has a static declaration (media_type). Because of the if statement, media_get_type() does sc
work to initialize media_type upon first invocation, but needs to return the value of this variable only on
subsequent calls.

media_type gets its actual value from

g_type_register_static(parent_id, name, type_info, options)

These arguments are as follows:

« parent_id: The parent type identifier. In this case, it's the GObject base class (G_TYPE_OBJECT).

2.2.3 Initializing Type ldentifiers 65

The Official GNOME 2 Developer's Guide

« name: A name (a string) for the type.

« type_info: A GTypelnfo structure containing class details (see the following paragraphs).

« options: Option flags (using bitwise OR), or zero if you don't need any. For example,
G_TYPE_FLAG_ABSTRACT indicates an abstract class.

Warning The type name must be at least three characters long.
The fields of the GTypelnfo structure are as follows (in this order):

« class_size (guintl6): Size of the class structure. In this case, it's easy: sizeof(MediaClass).

 base_init (GBaselnitFunc): The base class initializer. When you create a new class, GObject calls th
base initializers of all classes in the hierarchy chain leading up from the class. This is normally
necessary only if there is some dynamically allocated part of the class (not object) that GObject mus
copy to a derived class, and therefore, you need it only when your class has such data and is the pa
of some other class. Normally, it isn't necessary, and you can use NULL.

« base_finalize (GBaseFinalizeFunc): The base class finalizer; essentially, the reverse operation of the
base class initializer. You almost certainly need it when you have a base class initializer; otherwise,
use NULL.

« class_init (GClasslInitFunc): The class initializer. This function prepares class variables, in particular,
properties (see Sections 2.4) and signals (Section 2.6). Note that this is not the constructor for the
objects; however, the property definitions in the class initializer set up many of the defaults for the
constructor. The class initializer appears throughout this chapter; it is instrumental in figuring out how
classes work.

« class_finalize (GClassFinalizeFunc): The class finalizer. You normally won't need to do anything
when GObiject gets rid of a class, unless you have a very complicated mechanism for saving the stat
over program invocations.

« class_data (gconstpointer): GObject passes the class data to the class initializer and class finalizer.
One example of a situation in which you might use this function is when you want to use the same
initializer for several classes. Of course, that could make things even more complicated than they
already are.

* instance_size (guintl6): The size of the instance structure is an allocated object structure's memory
requirement; sizeof(Media) shown earlier in the code is typical.

e n_preallocs (guintl6): The number of instances to preallocate depends on the number of instances t
you think a typical program will use. If you specify 0, GObject allocates memory when it needs to. Be
careful when using this function, because you can waste a lot of memory if you go nuts with many
different kinds of classes.

« instance_init (GlnstancelnitFunc): The instance initializer runs every time you create a new object of
the class. It's not strictly necessary, because the constructor is also at your disposal. This field is
present because it is a part of GType; GObject doesn't need it.

« value_table (const GTypeValueTable *): This function table can map certain kinds of values to
functions, and it is really important only if you're doing something very involved with the type
system, such as creating your own object system. This book does not cover that topic, and it's
probably best if you forget that this function even exists.

Here are the type definitions for the various function prototypes you just saw:

typedef void (*GBaselnitFunc) (gpointer g_class);

typedef void (*GBaseFinalizeFunc) (gpointer g_class);

typedef void (*GClassInitFunc) (gpointer g_class, gpointer class_data);
typedef void (*GClassFinalizeFunc) (gpointer g_class, gpointer class_data);
typedef void (*GlInstancelnitFunc) (GTypelnstance *instance, gpointer g_class);

2.2.3 Initializing Type ldentifiers 66

The Official GNOME 2 Developer's Guide

Note You can get rid of the GTypelnfo structure as soon as you're finished with it g_type register_static()
makes a complete copy for itself. So in the media example, you could free up any dynamically allocate
parts of media_info that you like.

Try not to get tangled up in the initializers and finalizers. Normally, you won't be dealing with dynamically

allocated data in the classes themselves, so you won't need anything except a class initializer; you'll see tha

Section 2.4.1. You should not need to bother with the instance initializer, because you can use properties.

2.2.4 The Base Class: GObject

This section illustrates the makeup of the base class, GObject. All GObject classes inherit from this class. N
only do you need some of the utility macros to create new classes, but it helps to know the methods that yol
come across later.

Macros
In_Section 2.2.2, you defined several utility macros for the Media class. Here are the GObject versions:

« G_TYPE_OBJECT returns GObject's type identifier. Don't confuse this with G_OBJECT_TYPE.

« G_OBJECT(object) casts object to the GObject instance structure.

« G_OBJECT_CLASS(klass) casts an object class structure klass to the GObjectClass class structure

* G_IS_OBJECT(object) returns TRUE if the object parameter is an instance of a GObject. This
should return TRUE for any object that you define with GObject, unless you're very daring and decid
to make your own base object.

* G_IS OBJECT_CLASS(klass) returns TRUE if klass is a class structure. It should return TRUE for
any class structure within the GObject system.

« G_OBJECT_GET_CLASS(abject) returns the class structure (GObjectClass) corresponding to any
instance structure.

Of these, you will encounter G_TYPE_OBJECT and G_OBJECT() the most: G_TYPE_OBJECT when you
need to know the type identifier_of GObject (for instance, when defining a class like Media), and
G_OBJECT() when you need to pass an object instance as a GObject instance to a function.

Note Many common functions that take GObject parameters don't require class type casts, but
rather just expect an untyped gpointer pointer and do the casting work on their own.
Although this approach isn't terribly consistent, it can save you an awful lot of typing. The
functions that do this include g_object_get(), g_object_set(), g_object_ref(),
g_object_unref(), and the entire g_signal_connect() family.

Base Class Methods

Here is the part of the GObject class structure that contains public methods and a signal handler prototype.
You will see some of these time and again. (This definition comes straight from the gobject.h header file.)

typedef struct _GObjectClass GObjectClass;
typedef struct _GObjectConstructParam GObjectConstructParam;

<<..>>
struct _GObjectClass

{
GTypeClass g_type_class;

2.2.4 The Base Class: GObject 67

The Official GNOME 2 Developer's Guide

<<L..>>

/* public overridable methods */

GObject* (*constructor) (GType type,
guint n_construct_properties,
GObjectConstructParam *construct_properties);

void (*set_property) (GObject *object,
guint property_id,
const GValue *value,
GParamSpec *pspec);

void (*get_property) (GObject *object,
guint property_id,
GValue *value,
GParamSpec *pspec);

void (*dispose) (GObject *object);
void (*finalize) (GObject *object);
<L ..>>

/* signals/handlers */
void (*notify) (GObject *object, GParamSpec *pspec);

<L..>>

h

struct _GObjectConstructParam

{
GParamSpec *pspec;
GValue *value;

I3

The methods are as follows:

« constructor: This is the object's constructor, called when you create an instance of a class. It takes a
type identifier parameter (type), the number of properties to create (n_construct_properties), and an
array of property descriptions (construct_properties). You'll read about properties_and the GValues
that they employ in Section 2.4.

The constructor creates the object and initializes its data. If you want to create your own constructor,
you should always run the constructor of the parent class first and then extend the resulting parent
class object by yourself, so that your object isn't missing anything. Keep in mind, though, that you do
not usually need to make your own constructors; there is a further example of inheritance in Section
2.7 that provides an alternative.

 set_property: Writer function for properties.

 get_property: Reader function for properties.

« dispose: The destructor; GObject calls this when removing an object that is no longer in use (see
Section 2.5.2). Destructors take a single parameter: the object to destroy. Destructors clean up after
signal handlers and sort out other internal matters.

« finalize: GObiject calls the finalizer when an object's reference count goes to zero (again, see Sectior
2.5.2), before it gets around to calling the destructor. Use this for housekeeping functions that requir
immediate attention, such as removing dynamically allocated memory. You should always call an

2.2.4 The Base Class: GObject 68

The Official GNOME 2 Developer's Guide

object's parent finalizer at the end of your own finalizers. After running the finalizer, the object is
officially dead, and you should do nothing more with the data.

« notify: GObject calls this special method for property change signals (see Section 2.6). There is no
reasonable default, and you should not touch this (that is, inherit notify from the parent).

(11t might be some consolation that C++ and most scripting languages have GNOME bindings.

2.3 Methods

Although you haven't seen the class initializer for Media yet, you can now see how to define a simple metho
Here are some important things to remember about methods:

» Methods usually do not appear in class structure. Instead, method prototypes usually appear
somewhere soon after the class structure.

* A method's name should reflect the class name (for example, media_*() for Media).

« A method's first parameter is always an object (a structure of the instance class). Any remaining
parameters are up to you.

« In public methods, always check that the first parameter is actually a valid object of the method's
class.

« In addition, cast this object parameter after you do the check, because the object you get could be ir
subclass.

 Be careful about setting an object's attributes. Standard GTK+/GNOME practice dictates that all
attributes are properties (see Section 2.4); use that system for setting attributes.

These considerations sound like a lot of fuss, but this example shows that it doesn't amount to much:

void media_print_inv_nr(Media *object)

{
Media *media;
g_return_if_fail(IS_MEDIA(object));
media = MEDIA(object);

g_print("Inventory number: %d\n", media—>inv_nr);

}

Most public methods contain everything here but the last line (g_print(...);).

2.4 Properties

You should set and retrieve attribute data on your GObject instances using the property system so that othe
programmers can get at data through a uniform interface, rather than going through a series of custom acce
functions.

Properties have names and descriptions, so they are self-documenting to a certain extent. In addition,
exposing a GObject's data with properties allows you to employ an object design tool (such as Glade, see

Chapter 5).

2.3 Methods 69

The Official GNOME 2 Developer's Guide

You'll encounter properties ad infinitum in GTK+ when you read Chapter 3, primarily when manipulating
widget settings?!

2.4.1 Declaring Parameters

You must define each property in a class as a GObject parameter. To get started, you should obtain a
GParamSpec structure in your class initialization function (described in Section 2.2.3).

You'll need the following information to create a GParamSpec structure:

« An identifier. A short string will do, such as inventory—-id.

« A nickname. The full name of the parameter, such as inventory number.

A description. A concise explanation, such as number on the inventory label.
» Options, such as read—write access.

» Type-specific information, such as

¢ Minimum value

¢ Maximum value

¢ Default value

¢ A secondary type if you're encapsulating parameters (for example, G_TYPE_BOXED,
G_TYPE_ENUM, G_TYPE_FLAGS, G_TYPE_OBJECT, G_TYPE_PARAM).

¢ Sizes of arrays.

Because it is somewhat complicated, you don't create a GParamSpec structure by hand. Instead, use one ¢
g_param_spec_ functions in the following table to allocate the structure and set its fields.

Function Type
g_param_spec_boolean() |gboolean
g_param_spec_boxed() |GBoxed
g_param_spec_char() gchar
g_param_spec_double() |gdouble
g_param_spec_enum() GEnumClass, GEnumValuge

g_param_spec_flags() GFlagsClass
g_param_spec_float() gfloat
g_param_spec_int() gint
g_param_spec_int64() gint64
g_param_spec_long() glong

g_param_spec_object() GObject
g_param_spec_param() |GParamSpec

g_param_spec_pointer() |gpointer
g_param_spec_string() gchar *
g_param_spec_uchar() guchar
g_param_spec_uint() guint
g_param_spec_uint64() |guint64
g_param_spec_unichar() |gunichar

2.4.1 Declaring Parameters 70

The Official GNOME 2 Developer's Guide

g_param_spec_value_arra)l',{\)rray of some other type |

Typically, you place the call to a g_param_spec_ function in your class initializer function. You may recall
that the class initializer for the Media example is media_class_init(). Therefore, using parameters for
inventory—id and orig—package, media_class_init() would look something like this:

static void media_class_init(MediaClass *class)
{

GParamSpec *inv_nr_param;

GParamSpec *orig_package_param;

<<L..>>

/* create GParamSpec descriptions for properties */
inv_nr_param = g_param_spec_uint("inventory—id", /* identifier */
"inventory number", /* nickname */
"number on inventory label",
[* description */

0, /* minimum */
UINT_MAX, I* maximum */
0, [* default */

G_PARAM_READWRITE); /* flags */

orig_package_param = g_param_spec_boolean("orig—package”,
"original package?",
"is item in its original package?",
FALSE,
G_PARAM_READWRITE);

<<L..>>

}

Although the actual inv_nr and orig_package fields from the Media instance structure aren't in this function,
you will need to come back to them when you actually install the property in the class. The GParamSpec
structure serves to describe the property: its purpose, type, and permissible values.

The last parameter to a g_param_spec__ function is a bit mask that you can specify with a bitwise OR of any
the following:

« G_PARAM_CONSTRUCT indicates that GObject will assign a value to the property upon object
instantiation. At the moment, this works only in conjunction with G_PARAM_CONSTRUCT.

« G_PARAM_CONSTRUCT_ONLY indicates that the property may take on a value only when an
object is instantiated.

* G_PARAM_LAX_VALIDATION disables type checks when you write to this property. Set this only
if you know exactly what you're doing.

* G_PARAM_READABLE allows read access to the property.

* G_PARAM_WRITABLE allows write access to the property.

« G_PARAM_READWRITE is shorthand for G_PARAM_READABLE|G_PARAM_WRITABLE.

Note As this chapter progresses, the media_class_init() function code in this section will grow.

2.4.1 Declaring Parameters 71

The Official GNOME 2 Developer's Guide

2.4.2 Tangent: Generic Containers for Values

Before you get to Section 2.4.3, where you see how to activate a property in the class initializer, you need tc
familiarize yourself with how GObject moves the property values from place to place.

Untyped gpointer—style pointers normally take on the task of setting and retrieving function parameters of ar
arbitrary type. However, you need to store and check the type information at run time so that you don't try to
do something disastrous, like attempting to copy a string into a memory location that corresponds to a randc
integer.

GObject has a mechanism for holding a value along with its type into a_single "container," so that you can
pass the container along as a parameter and pull its value and type out when necessary. This system is call
GValue, with function names that start with g_value_.

The actual container is the GValue data structure. If you need to create one, you can do it with GLib's
elementary memory management utilities; there aren't any special functions just for GValues.

Warning That said, you must use g_malloc0(), g_new0(), or some other similar allocation function that sets ¢
of the new memory bytes to zero. You'll get an error when you try to initialize a GValue structure
with random bytes.

After creating a GValue structure gvalue, initialize it with
g_value_init(gvalue, type)

where type is an identifier such as G_TYPE_INT (see page 78 for a full list). For each type identifier, the
following are available:

« A verification macro, G_VALUE_HOLDS_ TYPE(gvalue), that returns TRUE when gvalue contains
the type.

« A writer function, g_value_set_type(gvalue, value), to place value into the gvalue container.

A reader function, g_value_get_type(gvalue), to fetch the value from gvalue.

Note If you can't decide on how often to verify the type inside a container, err on doing it too often instead of
one time too few when you go to read or write a value.

The standard types are listed below. Here is a small GValue demonstration:

/* gvaluedemo.c —— demonstrate GValue */

#include <glib—object.h>
#include <stdio.h>

int main(int argc, char **argv)
GValue *value;
g_type_init(); /* initialize type system */

/* allocate new GValue, zero out contents */
value = g_new0(GValue, 1);

/* initialize GValue type to gint */
g_value_init(value, G_TYPE_INT);

2.4.2 Tangent: Generic Containers for Values 72

The Official GNOME 2 Developer's Guide

/* set the value to 42 and read it out again */
g_value_set_int(value, 42);
g_print("Value: %d\n", g_value_get_int(value));

[* is the type of the GValue a GObject? */
if (G_VALUE_HOLDS_OBJECT(value))

{
g_print("Container holds a GObject\n");

}else {
g_print("Container does not hold a GObject\n");

}

/* expect "Container does not hold a GObject" */
g_free(value);

return O;

}

There are two special access functions for GValue structures of G_ TYPE_STRING:
g_value_set_static_string(gvalue, str) transfers a string pointer str_into a gvalue, and
g_value_dup_string(gvalue) returns a copy of a string in gvalue (you will need to deallocate that copy when
you're done with it, though).

Otherwise, the names are uniform. For each of the types in the following list, there is a verification macro an
a reader and writer access function, as described earlier. For example, G_TYPE_CHAR comes with
G_VALUE_HOLDS CHAR(), g_value_get char(), and g_value_set_char().

G_TYPE_BOOLEAN

G_TYPE_FLOAT

G_TYPE_POINTER

G_TYPE_BOXED

G_TYPE_INT

G_TYPE_STRING

G_TYPE_CHAR

G_TYPE_INT64

G_TYPE_UCHAR

G_TYPE_DOUBLE

G_TYPE_LONG

G_TYPE_UINT

G_TYPE_ENUM

G_TYPE_OBJECT

G_TYPE_UINT64

G_TYPE_FLAGS

G_TYPE_PARAM

G_TYPE_ULONG

It might be prudent to note that GObject also defines a gchararray type that stands for gchar *. The advanta
of using gchararray over a simple gchar pointer is in name only; when you have a gchararray array, you can
be certain that it's a string and not some other type that you've cast to gchar *.

To reset a GValue to its original state that is, the zeroed memory that you had just before you ran
g_value_init() use g_value_unset(gvalue). This frees up any extra memary that gvalue is currently using ar
sets its bytes in memory to zero. At that point, it's ready to be used again.

2.4.3 Installing Properties

Now you're ready to install some properties. Recall that in Section 2.4.1 you came up with the GParamSpec
structures for the Media class properties in the media_class_init() function. The property installation continu
in that function, with a call to

g_object_class_install_property(class, id, param)

where class is the class structure, param is the property's GParamSpec structure, and id is a unique identifi
obtained with an enumeration type. This identifier should begin with PROP_.

2.4.3 Installing Properties 73

The Official GNOME 2 Developer's Guide

Warning The property identifier must be greater than zero, so you will need to place a dummy value like
PROP_MEDIA 0 at the head of your enumeration type.

The code for media_class_init() should make things clear:

enum {

PROP_MEDIA_O0,
PROP_INV_NR,
PROP_ORIG_PACKAGE
2

static void media_class_init(MediaClass *class)

{
GParamSpec *inv_nr_param;
GParamSpec *orig_package_param;
GObjectClass *g_object_class;

/* get handle to base object */
g_object_class = G_OBJECT_CLASS(class);

<< param structure setup from Section 2.4.1 >>

/* override base object methods */
g_object_class—>set_property = media_set_property;
g_object_class—>get_property = media_get_property;

Warning Notice that you must set the set_property and get_property methods before installing the class

properties.
<< ..>>

[* install properties */

g_object_class_install_property(g_object_class,
PROP_INV_NR,
inv_nr_param);

g_object_class_install_property(g_object_class,
PROP_ORIG_PACKAGE,
orig_package_param);

<<..>>

Note The code in Section 2.4.1 and here accesses GParamSpec structures with the temporary variables
inv_nr_param and orig_package_param before installation with g_object_class_install_property().
Programmers normally omit these temporary variables, using the entire call to g_param_spec_boolean
as a parameter when they install the property.

To use the property system in the new class, media_class_init() must cast the new Media class structure

(class) pointer to_a GObject class structure named g_object_class. When you get a handle from a cast like

this, you can override the set_property and get_property methods in the GObject base class. This is exactly

what you must do to install the new properties such as inventory—id and orig—package. Remember that the
base object knows nothing about the properties and instance structures of its subclasses.

The example overrides the base class methods with media_set_property() and media_get_property(), and

therefore, you must supply prototypes before media_class_init(). These are straightforward, and because th
are replacements for methods in the base class structure, they must conform to the prototypes in the base ¢

2.4.3 Installing Properties 74

The Official GNOME 2 Developer's Guide

structure:

static void media_set_property(GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec);

static void media_get_property(GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec);

Note You can avoid prototypes for static functions by placing the actual functions (described below) before
media_class_init().

Now that you've set up all of this infrastructure to handle the properties, you can write the functions that

actually deal with the inv_nr and orig_package fields in the instance structure. The implementations consist

some busywork; to set a field, media_set_property() does the following:

1. Determines the property to set.
2. Removes the new property value from the GValue container from its parameter list.
3. Sets the field in the instance structure (finally!).

Here is the actual code:

static void media_set_property(GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)

Media *media;
guint new_inv_nr;
gboolean new_orig_package;

media = MEDIA(object);
switch(prop_id)
{

case PROP_INV_NR:
new_inv_nr = g_value_get_uint(value);
if (media—>inv_nr != new_inv_nr)
{
media—>inv_nr = new_inv_nr;

}

break;

case PROP_ORIG_PACKAGE:
new_orig_package = g_value_get_boolean(value);
if (media—>orig_package != new_orig_package)

{

media—>orig_package = new_orig_package;

}

break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID(object, prop_id, pspec):
break;

}
2.4.3 Installing Properties 75

The Official GNOME 2 Developer's Guide
}

The media_get_property() code is similar, except that it needs to put one of the instance structure fields into
the container rather than the other way around. No notification is necessary. (It would be very nosy of your
program to tell the object every time someone looked at a property, but you can do it if you really want to.)

static void media_get_property(GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{

Media *media;

media = MEDIA(object);
switch(prop_id)

{

case PROP_INV_NR:
g_value_set_uint(value, media—>inv_nr);
break;

case PROP_ORIG_PACKAGE:
g_value_set_boolean(value, media—>orig_package);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID(object, prop_id, pspec);
break;

}
}

Take a close look at the default case in each of these functions. The default comes into play only when the
function encounters an invalid property, and it runs G_ OBJECT_WARN_INVALID_PROPERTY_ID() on

the object, invalid property, and parameter structure. The resulting warning message will hopefully be strong
enough to get you to check your property access function calls.

Why Properties?

You may be wondering why you need such a complicated system just to set a bunch of fields in your instanc
structure. After all, you could write access methods to do this, or you could even just tell the programmer to
set the fields. However, you want a uniform system such as properties for the following reasons:

* You need a dynamic system. Subclasses can add their own properties with little effort, as you will se
in_Section 2.7.

« You want to define behavior for when properties change. This capability is extremely important in
GUI programming, where you want the program to react to changes in buttons, check boxes, and
other elements. If you haphazardly set instance structure fields instead of using properties, you woul
need to define a "reaction” function and make sure that any code that sets a field also calls that
function. Even with access methods, this can get out of hand very quickly, especially if your
“reaction” function needs to set other fields.

* You want a system that's easy to document. It's easy to list property names with their possible value
and descriptions. Access method APIs are considerably harder to describe, especially if the methods
aren't uniform.

2.4.3 Installing Properties 76

The Official GNOME 2 Developer's Guide
But What About Those Access Methods That | Keep Seeing?

In practice, you might see access methods for a class that correspond to properties in the class, especially \
older code. Functionally, there is no difference; it's just one more layer of indirection.

Let's say that you have this to set the Media orig—package property:

void media_set_orig_package(Media *object, gboolean new_value)

{
Media *media;
g_return_if_fail(IS_MEDIA(object));
media = MEDIA(object);

if (media—>orig_package != new_value)
{
media—>orig_package = new_value;
g_object_notify(G_OBJECT(media), "orig—package");
}
}

This does all of the work that you see under case PROP_ORIG_PACKAGE: in media_set_property() from
page 81. Therefore, you can rewrite that part:

case PROP_ORIG_PACKAGE:
new_orig_package = g_value_set_boolean(value);
media_set_orig_package(media, new_orig_package);
break;

This is primarily a matter of convention and a function of the age of the code. When reading API
documentation, you may see an object with more properties than access function pairs, indicating that
someone may have added more properties to some older code without bothering to use access functions
(developers don't usually remove access functions for fear of breaking third—party applications). In that case
class set_property() contains a mix of access function calls and field assignments/notifications.

Direct access function calls are slightly faster because they do not have to look up the property identifier anc
encapsulate any values. However, this speedup usually doesn't matter.

Plunfortunately, some GTK+ classes do not have property interfaces; hopefully, that's not a permanent
situation.

2.5 Using Objects

So far, you have seen a quite a bit of preparatory work with objects. This work is admittedly complex, and
you are probably hoping that using the objects is easier. Thankfully, it is.

To create an object, use g_object_new(type, ..., NULL), where type is the object's class type identifier. For
example, to create a Media object with the default property values, use

Media *media;

media = g_object_new(TYPE_MEDIA, NULL);

2.4.3 Installing Properties 77

The Official GNOME 2 Developer's Guide

If you want to set some of the properties when you create the object, try something like the following insteac

/* create an object, setting some properties */

media = g_object_new(TYPE_MEDIA,
"inventory-id", 42,
"orig—package", FALSE,
NULL);

Note The property list always ends with NULL.

If you decide to follow tradition and write a generator function to create an object for you, conventions dictat
that the generator name should be type_new(): for example, media_new(). You can always define a macro |
this, but be careful with the variable arguments; not all C preprocessors support variable arguments.

If you did a tidy job of programming your classes in particular, if every attribute in your instance structure
corresponds to a property, with the appropriate code in your initialization functions you don't need a
generator function. If you stick to g_object_new(), you can specify properties in any order that you wish,
easily add and delete properties, and in general, will not need to remember an additional set of function
names. Furthermore, if you avoid generator functions, you will have a much easier time creating bindings fo
other programming languages.

2.5.1 Using Properties

Now that you know how to create an object and initialize its properties, you probably want to know how to se
and retrieve those properties. The two functions for this are g_object_set() and g_object_get(); their
parameters are very similar to those of g_object_new(), as you can see in this example:

guint nr;
gboolean is_unpacked;

<<..>>

/* set new values */
g_print("Setting inventory—id = 37, orig—package = TRUE\n");
g_object_set(media,

"orig—package", TRUE,

"inventory-id", 37,

NULL);

/* double-check those new values */
g_print("Verifying..);
g_object_get(media,
"orig—package", &is_unpacked,
"inventory-id", &nr,
NULL);
g_print("inventory—id = %d, orig—package = %s\n",
nr, is_unpacked ? "TRUE" : "FALSE");

To retrieve parameters with g_object_get(), you need to specify the address of the target memory location;
g_object_get() fills the memory with the new values. Examples in the preceding code are &is_unpacked anc
&nr.

Note

2.5.1 Using Properties 78

The Official GNOME 2 Developer's Guide

Be careful not to mix up your types when accessing properties. That is, don't code something like
g_object_get(media, "my-double”, &my_int). You may also need to cast certain constants when using
them in conjunction with g_object_set(). This is one area where access functions may be a somewhat
preferable option.

Here are a few more functions that work with properties:

* g_object_set_property(abject, name, value)

Sets a single property name_in object to value.
* g_object_get_property(object, name, addr)

Stores the property name from object in the memory at addr.
» g_object_set_valist(object, name, varargs)

Like g_object_set_property(), but operates with variable arguments.
» g_object_get_valist(object, name, varargs)

Same as the preceding function, but retrieves the arguments instead of storing them.

2.5.2 Strong and Weak Object References

GObject uses a reference count to keep track of its objects. When you call g_object_new(), you're actually
getting a reference to the object, and GObject makes a note with the reference count. If you want another
reference to the same object, use g_object_ref(object) to return another reference.

To remove a reference, call g_object_unref(object). All references to a single object are equal; there is no
special treatment for an original reference, and as mentioned before, GObject removes an object when the
reference count goes to zero.

Such references are sometimes known as strong references, because they determine when GObject destro
an object. However, there are also weak references that can be present when GObject performs its garbage
collection. GObject manages these references to a certain extent; it has a list of the object pointers in memc
To create a weak reference, use

g_object_add_weak_pointer(object, weak_ptr_addr)

Here,_object is a casted existing reference to an object, and weak ptr_addr is the address of the new weak
pointer. If GObject removes the object behind the weak reference, it sets the weak reference to NULL. Use
g_object_remove_weak_pointer() with the same arguments to remove a weak pointer.

Note You still must assign the weak pointer by hand.

Here are some examples of how to use references that build on the examples in the previous section:
Media *media2, *media_weak;

<L ..>>
media_weak = NULL;

/* set media2 to a strong reference from media */
media2 = g_object_ref(media);

2.5.2 Strong and Weak Object References 79

The Official GNOME 2 Developer's Guide

/* set media_weak to a weak reference to media2 */
media_weak = media2;
g_object_add_weak_pointer(G_OBJECT(media2), (gpointer) &media_weak);

/* remove one strong reference */
g_object_unref(media2);

/* see if media_weak is NULL, meaning that object is gone */
if (media_weak == NULL)
{
g_print("media_weak is NULL; object is gone\n");
}else {
g_print("media_weak is not NULL; object is still in memory\n");

}

/* remove another reference */
g_object_unref(media);

/* check the weak pointer again */
if (media_weak == NULL)
{

g_print("media_weak is NULL; object is gone\n");

}

Don't confuse g_object * weak pointer() with g_object weak_*ref(). The latter function enables you to call
a notification function when the GObject is destroyed, but will not be covered in this book. The weak pointer
functions here just set the object pointer to NULL.

2.6 Signals

Signals are events that can happen to an object during the course of the object's life. Signals serve as a me
of communication between objects; when an object gets a signal, it can react in some way. The signal syste
in GObject is called GSignal.

Note In written language, a signal can be the act of sending a message or the message itself. In GObject, a
signal is the sender's version of the message. A GObject signal has one source and multiple potential
recipients.

A signal handler is a callback function with a prototype that you declare when you initialize a class (for
example, media_class_init() from Section 2.4.1). When some other part of a program emits a signal, GSignz
calls the handler on the object. You can alter the characteristics of an object with a signal handler. You can
specify the order of the handler invocations on a per—signal basis.

Note You add signal handlers on a per—object basis. When you add a handler to one object, it does not appl
for any other objects in the class.

You can pass parameters along with signals and receive return values from handlers with the matshalling
mechanism. Each signal usually has a function pointer in an object's class structure. The function behind thi
pointer is called the default handler. You can link additional functions into a signal, so that if there is more
than one return value per signal emission, the object may process all of the return values back with the help
an accumulator. Otherwise, GSignal returns the value of only the last signal handler.

2.6 Signals 80

The Official GNOME 2 Developer's Guide

2.6.1 Defining Signals and Installing Handlers

A signal isn't a data structure; it's just a guint identifier managed by GObject. You should define some name
for these identifiers with an enumeration type (for caching purposes later); a good place to do this is
somewhere before your class initialization function (for example, media_class_init()). Here is an example fol
two signals: one that removes an item from its package, and another that throws out an item.

/* Signal indices */
enum {
UNPACKED,
THROW_OUT,
LAST_SIGNAL

I3

As you can see, these names correspond to indices. Furthermore, common practice says that you should ct
a cache array as a static variable. Later, you will set each array element to a GObject signal identifier.

/* Signal identifier map */
static guint media_signal[LAST_SIGNAL] = {0, 0},

Note how LAST_SIGNAL indicates the size of the array.

Now you need to think about the signal handlers. You may recall from Section 2.2.1 that you already provide
some infrastructure in the MediaClass class structure for signal handlers: function pointer fields called
unpacked and throw_out. The actual functions that correspond to these are media_unpacked() and
media_throw_out(), so you need to provide their prototypes:

/* Prototypes for signal handlers */
static void media_unpacked(Media *media);
static void media_throw_out(Media *media, gboolean permanent);

With this, you are close to completing the media_class_init() function first started in Section 2.4.1. Continue
by setting the function pointers in the class structure to the actual signal handlers as shown on the next pag:

/* Initialize the Media class */
static void media_class_init(MediaClass *class)

{

GObjectClass *g_object_class;
<< parameter/property code >>

/* set signal handlers */
class—>unpacked = media_unpacked;
class—>throw_out = media_throw_out;

Then install the unpacked signal and its default handler with g_signal_new():

/* install signals and default handlers */
media_signal[UNPACKED] =
g_signal_new("unpacked", [* name */

TYPE_MEDIA, [* class type identifier */
G_SIGNAL_RUN_LAST|G_SIGNAL_DETAILED, /* options */
G_STRUCT_OFFSET(MediaClass, unpacked), /* handler offset */
NULL, /* accumulator function */
NULL, /* accumulator data */

2.6.1 Defining Signals and Installing Handlers 81

The Official GNOME 2 Developer's Guide

g_cclosure_marshal_VOID__VOID, /* marshaller */
G_TYPE_NONE, [* type of return value */
0);

That's a mouthful, to say the least, so here's how the code breaks down:

» The return value of g_signal_new() is GObject's identifier. You should store it in the mapping array
from earlier.

* The name is a short string to identify the signal.

» The type identifier is the GObject class type identifier macro.

» Options may include one or more of the following as a bitwise OR:

¢ G_SIGNAL_DETAILED: The signal supports details (see Section 2.6.6).

¢ G_SIGNAL_NO_HOOKS: You may not use emission hooks with the signal (see Section
2.6.7).

¢ G_SIGNAL_NO_RECURSE: If GSignal gets another signal emission for this signal handler
when the handler is still active, the signal handler restarts it does not call the signal handler
from within the signal handler.

¢ G_SIGNAL_RUN_FIRST: Signal emission has several stages. This flag indicates that the
handler should run in the first stage (see Section 2.6.2).

¢ G_SIGNAL_RUN_LAST: The signal handler runs in the third stage (use this if you're not
sure what to do).

¢ G_SIGNAL_RUN_CLEANUP: The signal handler runs in the last stage.

¢ G_SIGNAL_ACTION: If some code emits an action signal, it doesn't need to do any extra
housecleaning around the target object. You can use this to interconnect code from different
sources.

» The offset is an ugly way to tell g_signal_new() where the class signal handler function is. It is an
offset from the memory location of the class structure, and luckily, you have the
G_STRUCT_OFFSET macro to do the work for you.

» The_accumulator is a callback function that collects various return values (see Section 2.6.4).

» The accumulator data is where to put the accumulator's data.

« The C_Marshaller for the signal is described in Section 2.6.3.

* The return value is the return value of the marshaller.

« The number of parameters specifies how many extra parameters to pass along with the marshaller.
If this number is greater than zero, you must specify the GValue types (see the throw_out example
that follows).

Having learned all of this, you can install the signal and default handler for throw_out (the difference is that
throw_out takes a gboolean parameter) and finally put media_class_init() to rest.

media_signal[THROW_OUT] =
g_signal_new("throw_out",

TYPE_MEDIA,
G_SIGNAL_RUN_LAST|G_SIGNAL_DETAILED,
G_STRUCT_OFFSET(MediaClass, throw_out),
NULL, NULL,
g_cclosure_marshal_VOID__BOOLEAN,
G_TYPE_NONE,
1,
G_TYPE_BOOLEAN);

The signal handlers are fairly simple:

2.6.1 Defining Signals and Installing Handlers 82

The Official GNOME 2 Developer's Guide

/* unpacked signal handler */
static void media_unpacked(Media *media)

{

if (media—>orig_package)

{
g_object_set(media, "orig—package", FALSE, NULL);
g_print("Media unpacked.\n");

}else {
g_print("Media already unpacked.\n");

}
}

/* throw_out signal handler */
static void media_throw_out(Media *media, gboolean permanent)

{

if (permanent)

{
g_print("Trashing media.\n");

}else {
g_print("Media not in the dumpster quite yet.\n");

}
}

Notice the additional parameter to media_throw_out(), and that these functions have no return values.

2.6.2 Emitting Signals

One way to emit a signal is with

g_signal_emit_by_name(object, name [, parms ..] [, return])
The arguments are as follows:

« object (gpointer): The target object.

* name (const gchar *): The signal identifier (for example, "unpacked").
« parms: Signal handler parameters (if any).

« return: Location of return value (if any).

Therefore, if you have a signal with a signature of VOID:VOID, you need only two parameters; otherwise,
you need at least three. Here are some examples with the signals defined in Section 2.6.1:

g_signal_emit_by_name(media, "unpacked");
/* expect "Media unpacked." */

g_signal_emit_by_name(media, "unpacked");
/* expect "Media already unpacked." */

g_signal_emit_by_name(media, "throw—out", TRUE);
[* expect "Trashing media." */

Many programmers prefer to emit signals based on the numeric signal identifier to avoid a lookup on a strin
This function is the manual equivalent of g_signal_emit_by name():

g_signal_emit(gpointer object, guint signal_id, GQuark detalil, ...)

2.6.2 Emitting Signals 83

The Official GNOME 2 Developer's Guide

You should use this function in conjunction with cached signal identifiers. Recall from Section 2.6.1 that
media_signal[] holds the cache for the ongoing media example. Therefore, this example sends the unpacke
signal to media:

g_signal_emit(media, media_signal[UNPACKED], 0);

Note This book primarily uses g_signal_emit_by name() because it requires less coding baggage. However

you continuously emit signals, you should consider caching the signal identifiers as described above.
If you set the throw—out handlers to return gboolean, the following code would retrieve that value and place
it into a return_val variable:

gboolean return_val;

<<..>>
g_signal_emit_by_name(media, "throw—-out", TRUE, &return_val);

if (return_val)

{
g_print("Signal (throw—out): returned TRUE.\n");

}else {
g_print("Signal (throw—out): returned FALSE.\n");

When you emit a signal, the GSignal runs through the following stages of handler calls:

1. Default handlers installed with the G_SIGNAL_RUN_FIRST option

2. Emission hooks (see Section 2.6.7)

3. User—defined handlers installed without the after option (see Section 2.6.5)
4. Default handlers installed with the G_SIGNAL_RUN_LAST option

5. User—defined handlers installed with the after option

6. Default handlers installed with the G_SIGNAL_RUN_CLEANUP option

Here are a few additional functions for emitting signals:
 g_signal_emitv(const GValue object_and_parms, guint signal_id, GQuark detail, GValue *result)
To use this function, you must store the target object and signal parameters in a GValue array
object_and_parms and provide a place for the return value at result.
* g_signal_emit_valist(gpointer object, guint signal_id, GQuark detail, va_listva_args)
This function works just like g_signal_emit, but with a previously prepared variable argument list

va_list for the handler arguments and return value. With this call, you can create your own signal
emission functions that take variable arguments.

2.6.3 Marshallers

When some code emits a signal, GSignal uses a marshaller to transport a list of parameters to the signal
handler and to collect and propagate any return values.

Marshallers have names that reflect the parameter types and return values. The format is:

prefix RETURNTYPE__PARMITYPE[PARM2TYPE._..]

2.6.3 Marshallers 84

The Official GNOME 2 Developer's Guide

For example, the marshaller for media_unpacked() was g_cclosure_marshal_VOID__ VOID because this
handler takes no parameters other than the object and returns nothing.

GObject comes with a number of marshallers for one parameter and no return value, as shown in the table «
the next page.

Marshaller Parameter Type
g_cclosure_marshal VOID__BOOLEAJgboolean
g_cclosure_marshal_VOID__BOXED |GBoxed*
g_cclosure_marshal VOID__CHAR |gchar
g_cclosure_marshal_VOID__DOUBLE|gdouble
g_cclosure_marshal_ VOID__ENUM |gint (enumeration types
g_cclosure_marshal_VOID__FLAGS [guint (options)
g_cclosure_marshal VOID__FLOAT |gfloat
g_cclosure_marshal_VOID__INT gint
g_cclosure_marshal VOID__LONG |glong
g_cclosure_marshal VOID__ OBJECT |GObject*
g_cclosure_marshal VOID__PARAM |[GParamSpec* or derived
g_cclosure_marshal VOID _POINTERgpointer
g_cclosure_marshal VOID __STRING |gchar* or gchararray
g_cclosure_marshal VOID__UCHAR |guchar
g_cclosure_marshal VOID__ULONG |gulong
g_cclosure_marshal VOID _UINT guint
g_cclosure_marshal_VOID _VOID void (no parameters)
Warning Using the wrong marshaller will probably cause your program to crash.

If you don't see the marshaller you need in the preceding list (that is, your signal handler returns a value

and/or takes more than a single parameter), you have to provide your own. Your marshaller names should
resemble the following:

_my_marshal_INT__VOID
_my_marshal_VOID__OBJECT_INT
_my_marshal_UINT__BOOLEAN_BOOLEAN

where _my_marshal is your prefix.

Thankfully, you don't have to actually write the marshaller code; there's a utility called glib—genmarshal to dc
the dirty work for you. For example, to create the marshallers above, put the following in a file called
my_marshaller.list:

INT:VOID
VOID:OBJECT,INT
UINT:BOOLEAN

The file format is fairly obvious; each line is a signature defining a new marshaller, starting with the return

type. After a colon, you list the parameter types. You should be able to determine the valid types from the
table earlier in this section.

2.6.3 Marshallers 85

The Official GNOME 2 Developer's Guide

To create the actual code, run these two commands:

glib—genmarshal ——prefix _my_marshal ——header my_marshaller.list > my_marshaller.h
glib—genmarshal ——prefix _my_marshal ——body my_marshaller.list > my_marshaller.c

You now have a new source file, my_marshaller.c, and a my_marshaller.h header file.

WarningYou don't have to supply a prefix. The default is g_cclosure_user_marshal, but if you choose to
accept this, be aware that you risk duplicate symbols at link time, especially if you are combining
several different pieces of code.

You must include my_marshaller.h in the source file that includes your class initialization function (or any

other place where you install signal handlers). The my_marshaller.h file should look something like this:

#ifndef ____my_marshal_MARSHAL_H__
#define ____my_marshal_MARSHAL_H_

#include <glib—object.h>
G_BEGIN_DECLS

/* INT:VOID (my_marshaller.list:1) */
extern void _my_marshal_INT__VOID
(GClosure *closure,
GValue *return_value,
guint n_param_values,
const GValue *param_values,
gpointer invocation_hint,
gpointer marshal_data);

/* VOID:OBJECT,INT (my_marshaller.list:2) */
extern void _my_marshal_VOID__OBJECT_INT

(GClosure *closure,

GValue *return_value,

guint n_param_values,

const GValue *param_values,

gpointer invocation_hint,

gpointer marshal_data);

/* UINT:BOOLEAN (my_marshaller.list:3) */
extern void _my_marshal_UINT__BOOLEAN

(GClosure *closure,

GValue *return_value,

guint n_param_values,

const GValue *param_values,

gpointer invocation_hint,

gpointer marshal_data);

G_END_DECLS

#endif * ____my_marshal_MARSHAL_H__ */

If you're building a Makefile, rules for creating the marshallers would look something like this:

my_marshaller.h: my_marshaller.list
glib—genmarshal ——prefix _my_marshal ——header \
my_marshaller.list > my_marshaller.h

my_marshaller.c: my_marshaller.list

2.6.3 Marshallers 86

The Official GNOME 2 Developer's Guide

glib—genmarshal ——prefix _my_marshal ——body \
my_marshaller.list > my_marshaller.c

Note Remember that the whitespace in the preceding listing actually consists of tabs.
You may also want to add a dependency for glib—genmarshal, but this is probably best done with the help o
GNU autoconf (see Chapter 6).

2.6.4 Signal Accumulators

If GSignal runs several signal handlers for one signal, the handler calls run in succession, and the marshalle
propagates the return value from the last handler back to the code that emitted the signal.

In rare cases, though, you may want to know what all of the handlers returned. You can define an accumula
to collect and process all of the return values.

To install an accumulator along with a signal, supply a GSignalAccumulator callback function as the fifth
argument to g_signal_new(). Here is the callback type definition:

typedef struct _GSignallnvocationHint GSignallnvocationHint;
<<..>>

typedef gboolean (*GSignalAccumulator)
(GSignallnvocationHint *ihint,

GValue *return_accu,
const GValue *handler_return,
gpointer data);

<<..>>

struct _GSignallnvocationHint

{
guint signal_id;
GQuark detail;
GSignalFlags run_type;
2

GSignal calls your accumulator right after it runs each signal handler. As you can see from the preceding
code, accumulator functions have four arguments:

« ihint (GSignallnvocationHint *): A structure containing the signal identifier signal_id. a detail (see
Section 2.6.6) and the signal options from g_signal_new().

« return_accu_(GValue *): The accumulator that GSignal eventually returns to the code that emitted the
signal. You can do anything you like with this container.

« handler_return (const GValue *): Contains the return value from the last signal handler.
« data (gpointer): Any accumulator data that you set up with g_signal_new().

Your accumulator should return TRUE if you want GSignal to continue calling signal handlers for this
particular signal emission, or FALSE if it should stop.

An accumulator typically may be used to look over Boolean values that signal handlers return. As soon as o
of the handlers returns TRUE, the accumulator propagates TRUE as a return value and stops the emission

2.6.4 Signal Accumulators 87

The Official GNOME 2 Developer's Guide

process.

This book doesn't have an example of an accumulator (there's only so much space), but it's easy enough to
find one: Unpack the GTK+ source code, change to the distribution's top-level directory, and run this
command:

grep GSignallnvocationHint */*

This command prints lines from the source files that have accumulators.

2.6.5 Attaching Handlers to Signals

As you will see with widget objects_in Chapter 3, you want to be able attach different signal handlers to the
same kind of object (for example, if you have two button objects, you don't want the buttons to do the exact
same thing).

This code attaches a new handler called meep_meep() to the unpacked signal on media, using
g_signal_connect():

static void meep_meep(Media *media)

{
guint nr;
g_object_get(media, "inventory-id", &nr, NULL);

g_print("Meep—meep! (Inventory number: \%d)\n", nr);

}

<<..>>
gulong handler_id,;

/* connect new handler */

handler_id = g_signal_connect(media,
"unpacked",
(GCallback) meep_meep,
NULL);

/* test the new handler */

g_signal_emit_by_name(media, "unpacked");
/* expect "meep—meep" message, plus output of other handler(s) */

In this example, GSignal calls meep_meep() before the default signal handler, because the default was not
installed with G_SIGNAL_RUN_FIRST.

The most common way to attach a handler is to use

gulong handler_id,;

handler_id = g_signal_connect(object, name, function, data);

« object (gpointer): The target object.

« name (const gchar *): The signal name.

« function (GCallback *): The new signal handler. This callback function must have the same prototype
as in the instance structure, but you may need to cast to get a fit as an argument.

« data (gpointer): Optional data for the signal handler.

2.6.5 Attaching Handlers to Signals 88

The Official GNOME 2 Developer's Guide

You'll see plenty of uses for the optional data pointer later in this book, such as the one described in Sectior
3.3. Normally, GSignal attempts to pass the data to the signal handler as the last argument. However, if you
want to use a handler that takes a data pointer as its first parameter, use

g_signal_connect_swapped(object, name, function, data)

You might want to do this if your handler is a library function that takes only one argument. An example is in
Section 3.6.10.

g_signal_connect_after(object, name, function, data)

is nearly identical to g_signal_connect(), except that function runs in stage 5 listed in Section 2.6.2 rather th;
in stage 3. The idea is that you can make the handler run after the default handler, but as you can see from
section, you can also override that behavior when you install the default handler.

All g_signal_connect*() calls return an identifier for the handler binding. If you store the identifier as
handler_id, you can check the status of a binding with

g_signal_handler_is_connected(object, handler_id)

To remove a binding, invoke

g_signal_handler_disconnect(object, handler_id)

Here are some examples:

/* test and disconnect handlers */
if (g_signal_handler_is_connected(media, handler_id))

g_print("meepmeep is connected to media. Detaching...\n");

}

g_signal_handler_disconnect(media, handler_id);
if (!g_signal_handler_is_connected(media, handler_id))

g_print("meepmeep no longer connected:\n");
g_signal_emit_by_name(media, "unpacked");

}

Note Remember that any handlers that you connect to an object are on a per—object basis and do not apply
the rest of the class. You can also connect, disconnect, and block signal handlers during emission.

2.6.6 Details

Signal details are further subdivisions of signals. To specify a detail in a signal name, append two colons an
the detail name (for example, unpacked::ding).

You can add detail information when you connect a handler or emit a signal. When you emit a signal with a
detail, GSignal calls the handlers with that detail and those completely without details. GSignal does not calll
handler with a detail that does not match the given emission. In addition, if you emit a signal without a detail
GSignal will not call any handler connected with a detail. You should get the idea from the following
example:

2.6.6 Details 89

The Official GNOME 2 Developer's Guide

static void ding(Media *media)

{
g_print("Ding.\n");

}

static void dong(Media *media)

{
g_print("Dong.\n");

}

<<L..>>

/* connect handlers with ding and dong details */
g_signal_connect(media, "unpacked::ding", (GCallback)ding, NULL);

g_signal_connect(media, "unpacked::dong", (GCallback)dong, NULL);

g_signal_emit_by_name(media, "unpacked::ding");
/* expect "Ding," then "Media ... unpacked" */

g_signal_emit_by_name(media, "unpacked::dong");
/* expect "Dong," then "Media ... unpacked" */

g_signal_emit_by_name(media, "unpacked");
/* expect only "Media ... unpacked" */

Note Signal details work only when you install a signal with the G_SIGNAL_DETAILED optign (see Section
2.6.1).

2.6.7 Emission Hooks

User—defined signal handlers connect only to single objects. However, you can also define emission hooks
that apply to a GSignal identifier instead of an object. When you emit a signal that has a hook, GSignal calls
the hook regardless of the target object. Therefore, you can make user—defined hooks at run time that apply
all objects in a class rather than just one object. You can attach details to hooks, just as you did with regular
signals and their handlers.

Hook functions have the GSignalEmissionHook type and look a bit different than normal signal handlers.
Here is the function type definition:

typedef gboolean (*GSignalEmissionHook) (GSignallnvocationHint *ihint,
guint n_param_values,
const GValue *param_values,
gpointer data);

As with the accumulators in Section 2.6.4, each hook receives a GSignallnvocationHint structure and a
user—defined untyped data pointer. The other parameters are as follows:

e n_param_values is the number of signal emission parameters.

« param_values is an array of GValues, each containing the parameters from the signal emission. The
first parameter is the target object. To get to the others, you need to do some pointer arithmetic (as t
example in this section will imply).

« data is a pointer to any user—defined data.

Hooks return gboolean. If a hook returns FALSE, GSignal removes the hook from the signal emission
sequence. Make sure to return TRUE if you want your hook to run more than once.

2.6.7 Emission Hooks 90

The Official GNOME 2 Developer's Guide

The following example is a little difficult to read at first, but it does very little. Essentially, the hook verifies
that its parameter is a Media object and prints the inventory number. After GSignal calls the hook for the thir
time, the hook returns FALSE and therefore requests removal from the signal.

static gboolean my_hook(GSignallnvocationHint *ihint,
guint n_param_values,
const GValue *param_values,
gpointer *data)

static gint n = 0;
guint inv_nr;
Media *m;
GObiject *obj;

g_print("my_hook(): ");

[* check for a valid Media object */

if (n_param_values > 0)

{
obj = g_value_get_object(param_values + 0);
if (IS_MEDIA(obj))

m = MEDIA(obj);

g_object_get(m, "inventory-id", &inv_nr, NULL);

g_print("inventory number = %d.\n", inv_nr);
}else {

g_print("called with invalid object\n");

}else {
g_print("called with invalid parameters\n");

}

n++;
g_print("my_hook(): invocation #%d", n);

if (n ==3)

{
g_print(" (last time)\n");
return(FALSE);

}else {
g_print("\n");
return(TRUE);

}

}

<<..>>

gulong hook_id;
Media *m2, *m3;

<< create one more media object, m2 >>

/* add an emission hook */
hook_id = g_signal_add_emission_hook(media_signal[UNPACKED],
0,
(GSignalEmissionHook)my_hook,
NULL, NULL);

/* test the hook on three different objects */

g_signal_emit_by_name(media, "unpacked");
g_signal_emit_by_name(mz2, "unpacked");

2.6.7 Emission Hooks 91

The Official GNOME 2 Developer's Guide
g_signal_emit_by_name(media, "unpacked");

/* this time, the hook should no longer be active */
g_signal_emit_by_name(media, "unpacked");

Notice that g_signal_add_emission_hook() uses the signal identifier map from Section 2.6.1.

To remove a hook, run g_signal_hook remove() on the hook identifier that g_signal_add_emission_hook()
returns.

Note You won't find too much use for hooks in common practice. Before you install a hook into a
class, you might ask yourself if it's really necessary.

2.6.8 More Signal Utilities

A number of tools are available to monitor and control signals and their emissions. For example, you can ge
the options specified at installation, the after flag, and handler bindings. In addition, you can block signal
handlers and interrupt a signal emission.

Blocking Signal Handlers

» g_signal_handler_block(gpointer object, gulong handler_id) Disables a signal handler temporarily.
GSignal will not call the handler for object until further notice.
« g_signal_handler_unblock(gpointer object, gulong handler_id) Enables a signal handler.

Note You can disable a signal handler as many times as you like; the effect is like putting an extra latch on &
door. Therefore, if you block a handler three times in succession, you must enable it three times to get
working again.

Aborting Signal Emissions

» g_signal_stop_emission_by name(gpointer abject, const gchar *signame) Ends the current signal
emission. Note that signame is the signal's name, including any detail. If there is no such signal
emission, this function prints a warning message.

» g_signal_stop_emission(gpointer object, guint signal_id, GQuark detail) Same as the preceding
function, but uses a signal identifier and a separate detail name.

Identifier Functions
To help you manage signals, names, and identifiers, GSignal provides the following:

* guint g_signal_lookup(gchar *name, GType class) returns the signal identifier corresponding to nam:
for the class class type identifier.

« gchar *g_signal_name(guint signal_id) returns the signal name for signal_id.

* guint *g_signal_list_ids(GType class, guint *num_sigs) returns an array of signal IDs for class,
writing the number of signals in num_sigs. You must deallocate this memory by yourself.

Here is a small demonstration:

guint i, nr, *sigs;

sigs = g_signal_list_ids(TYPE_MEDIA, &nr);
g_print("ID Name\n");

2.6.8 More Signal Utilities 92

The Official GNOME 2 Developer's Guide

g_print(" \n");

i=0;

while (i < nr)

{
g_print("%-4d %s\n", *sigs, g_signal_name(*sigs));
i++;
Sigs++;

}
g_print("\nTotal signals: %d\n", nr);

g_free(sigs);
Miscellaneous Functions

Here are several more functions that work with signals that you might find useful. Refer to the online API
documentation for a detailed list of the parameters.

» g_signal_newv() is like g_signal_new(), except that here you supply the handler parameter types in :
array.

» g_signal_valist() wants a va_list of the handler parameter types. This function is suitable for building
your own signal installers.

» g_signal_connect_data() is the full-blown function for installing signal handlers. The rest of the
g_signal_connect functions in this chapter are macros based on this function.

« g_signal_query() asks for detailed information about a signal and fills a GSignalQuery structure with
the information. If the utilities in the previous subsection weren't enough for you, check out this one.

« g_signal_handlers_block_matched() blocks all signal handlers that match criteria in a given
GSignalMatchType structure.

« g_signal_handlers_unblock_matched() is like the preceding function, but it enables the signal
handlers.

« g_signal_handlers_disconnect_matched() is like the preceding function, but it removes the signal
handlers from their objects.

« g_signal_handler_find() looks for a signal that matches the criteria in a GSignalMatchType structure.

« g_signal_handlers_block by func() disables signal handlers based on a pointer to the handler
function.

« g_signal_handlers_unblock_by func() is the opposite of the preceding function.

» g_signal_handlers_disconnect_by func() is like the preceding function, but removes the handler.

BlThere are two spellings of this word: marshaling and marshalling. The text in this book uses the double-|
variants, but you may see files and API elements with a single I.

2.7 Inheritance

After digesting the material in the previous sections, you should be quite familiar with the creation and use o
classes and signals. This chapter's final topic is inheritance.

In principle, you already saw inheritance when you created the Media class, because it is a subclass of
GObject. Here are the details of how to build a subclass:

1. Define the_instance structure with a pointer for the parent instance structure at the beginning.
2. Define the _class structure with a pointer to the parent class structure at the beginning.

2.6.8 More Signal Utilities 93

The Official GNOME 2 Developer's Guide

3. In the function that returns the new subclass, use the parent class type identifier as the first argumer
to g_type_register_static().

4.In the class initializer, install any new properties and signals. You may also install new default
handlers for inherited signals.

The greater part of this section illustrates these steps, creating a CD class from Media. There is only one
additional property, writable. A small demonstration of how to work with the new subclass follows the
definitions.

To start, you need the usual instance and class structure definitions introduced in Section 2.2.1, as well as t
macros from Section 2.2.2. Notice that writable is in the instance structure, but you need nothing else. ltems
such as set_property and get_property come from the parent structures.

[rrexexexik CD (class derived from Media) *rxxrtsskk/

typedef struct _CD {
Media media_instance;
gboolean writable;

} CD;

typedef struct _CDClass {
MediaClass media_class;
} CDClass;

#define TYPE_CD (cd_get_type())
#define CD(object) \
(G_TYPE_CHECK_INSTANCE_CAST((object), TYPE_CD, CD))

#define CD_CLASS(klass) \
(G_TYPE_CHECK_CLASS_CAST((klass), TYPE_CD, CDClass))

#define IS_CD(object) \
(G_TYPE_CHECK_INSTANCE_TYPE((object), TYPE_CD))

#define IS_CD_CLASS(klass) \
(G_TYPE_CHECK_CLASS_TYPE((klass), TYPE_CD))

#define CD_GET_CLASS(object) \
(G_TYPE_INSTANCE_GET_CLASS((object), TYPE_CD, CDClass))

static void cd_class_init(CDClass *class);

Now you must provide a function to return the new class type identifier (TYPE_CD), as in Section 2.2.3. Not
the parent class type identifier from the Media class (shown in boldface):

GType cd_get_type(void)

static GType cd_type = 0;
const Glinterfacelnfo cleanable_info;

if (cd_type)
{

static const GTypelnfo cd_info = {
sizeof(CDClass),
NULL,
NULL,
(GClasslnitFunc)cd_class_init,
NULL,

2.6.8 More Signal Utilities 94

The Official GNOME 2 Developer's Guide

NULL,
sizeof(CD),
16,
NULL

h

const Glnterfacelnfo cleanable_info = {
cd_cleanable_init, NULL, NULL
h

/* Register type, use ID of parent class TYPE_MEDIA */
/*"CD" is too short, use "CompactDisc" instead */
cd_type = g_type_register_static(TYPE_MEDIA, "CompactDisc", &cd_info, 0);

/* add interface */
g_type_add_interface_static(cd_type, TYPE_CLEANABLE, &cleanable_info);
}

return cd_type;

}

Now you are almost ready to write the cd_class_init() class initializer, but first, you must provide some
dependencies:

/* CD constants and prototypes for properties */

enum {
PROP_0_CD,
PROP_WRITABLE
3
static void cd_get_property(GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec);
static void cd_set_property(GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec);

Note By now, the pedantic C programmer may be wondering why you would ever make prototypes for static
functions. The prototypes just shown are not necessary if you define the functions before the
cd_class_init(). In this book, it's primarily a matter of organization we didn't want to go into detalil
about properties before explaining the role of the class initializer.

For the sake of demonstration, this subclass replaces Media's default signal handler for unpacked with this:

/* a new default signal handler for unpacked */
static void unpacked_cd()

{
g_print("Hi"\n");
}

The class initializer is fairly straightforward; notice how replacing the default signal handler is a simple
assignment after you get the parent class structure:

/* CD class initializer */
static void cd_class_init(CDClass *class)

{
2.6.8 More Signal Utilities 95

The Official GNOME 2 Developer's Guide

GObjectClass *g_object_class;
MediaClass *media_class;

media_class = MEDIA_CLASS(class);
media_class—>unpacked = unpacked_cd;

g_object_class = G_OBJECT_CLASS(class);
g_object_class—>set_property = cd_set_property;
g_object_class—>get_property = cd_get_property;

g_object_class_install_property(
g_object_class,
PROP_WRITABLE,
g_param_spec_boolean("writable", "Writable?",
"Is the CD writable?", FALSE,
G_PARAM_READWRITE|G_PARAM_CONSTRUCT_ONLY));

}

You set and retrieve writable as described in Section 2.5.1, but you may wonder how this works. After all, th
preceding code overrides the set_property() and get_property() methods for the base class, and there is no
mention of the parent's properties in the functions the follow.

The key to understanding this is that GObject initializes parent classes first. When a class installs its
properties, GObject associates those properties with the class, and therefore, it can also look up the
appropriate *property() functions based on that class.

static void cd_set_property(GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
gboolean writable;
CD *cd = CD(object);

switch(prop_id)
{
case PROP_WRITABLE:
writable = g_value_get_boolean(value);
if (cd—>writable != writable)

{
cd—>writable = writable;
}
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID(object, prop_id, pspec);
break;
}
}
static void cd_get_property(GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)

{
CD *cd = CD(object);

switch(prop_id)

{
case PROP_WRITABLE:

2.6.8 More Signal Utilities 96

The Official GNOME 2 Developer's Guide

g_value_set_boolean(value, cd—>writable);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID(object, prop_id, pspec);
break;
}
}

Now we're ready to use the new subclass. For the purposes of demonstration, assume that you also createc
another new subclass of Media called EightTrack for 8—track tapes. It adds a minutes property to Media,
representing the total playing time of a tape.

You create objects and access properties as you would expect:

Media *media;

CD *cd;

EightTrack *eighttrack;
guint nr;

gboolean is_unpacked;

<< create a new media object >>

/* create a new CD object */

cd = g_object_new(TYPE_CD,
"inventory—id", 423,
"writable", FALSE,
NULL);

/* verify data in the object */
g_object_get(cd,
"inventory-id", &nr,
"writable", &is_unpacked,
NULL);

g_print("cd: writable = %s, inventory—id = %d\n",
is_unpacked? "true":"false", nr);

/* create an EightTrack object */
eighttrack = g_object_new(TYPE_EIGHTTRACK, "minutes", 47, NULL);

The following tests the signal handlers. Remember that the unpacked handler for CD is different now.

/* EightTrack's unpacked handler; same as Media's */
g_signal_emit_by_name(eighttrack, "unpacked", NULL);

/* CD's unpacked handler; expect "Hi!" instead */
g_signal_emit_by _name(cd, "unpacked", NULL);

Finally, you can test various objects for membership in classes:

/*is cd in Media? (subclass in parent; expect true) */
g_print("cd is %sMedia object\n", IS_MEDIA(cd)? "a" : "not a);

/* is eighttrack in Media? (subclass in parent; expect true) */
g_print("eighttrack is %sMedia object \n", IS_MEDIA(eighttrack)? "a " : "not a ");

/* is media in CD? (parent in subclass; expect false) */
g_print("media is %sCD object\n", IS_CD(media)? "a " : "not a ");

2.6.8 More Signal Utilities 97

The Official GNOME 2 Developer's Guide

/*is cd in EightTrack? (expect false) */
g_print("cd is %sEightTrack object\n", IS_EIGHTTRACK(cd)? "an " : "not an ");

Note You sometimes need access to the internals of the parent object in your object initialization and
manipulation functions. If you want the Media parent object of cd, use the MEDIA() casting macro to
get a Media object. Likewise, you can get at the parent class with MEDIA_CLASS(). The class initialize
function cd_class_init() used this to override the unpacked signal handler.

2.7.1 Interfaces

In principle, an interface is nothing but a class with no objects and no regard for class hierarchy. Interfaces
consist only of methods, and an object implements the interface when its class has all of these methods.

An interface's infrastructure includes an abstract interface type with a class structure, but no instance structt
Interfaces inherit all of their base characteristics from a base interface GTypelnterface (type identifier
G_TYPE_INTERFACE), much like a regular class inherits from GObject.

Defining an Interface

This section illustrates an interface called Cleanable that CD and EightTrack implement. Cleanable will
include only one method: void clean(Cleanable *object).

The structures are fairly trivial the instance structure is empty, and the class structure contains the parent
interface and a pointer to the clean method:

/* empty declaration for instance structure */
typedef struct _Cleanable Cleanable;

/* Cleanable class structure */
typedef struct _CleanableClass {
GTypelnterface base_interface;
void (*clean) (Cleanable *object);
} CleanableClass;

Next, you must define a type identifier, casting, membership, and interface macros for Cleanable. Following
the naming conventions_n Section 2.2.2, TYPE_CLEANABLE() returns the result of cleanable_get type(),
IS_CLEANABLE() verifies that an object implements the interface, and CLEANABLE() casts an object to a
cleanable type. CLEANABLE_GET_CLASS() returns the interface class, not the class of the object.

Another deviation from normal classes and objects is that you don't need CLEANABLE_CLASS or
IS_CLEANABLE_CLASS, again, because there are no objects that belong strictly to the Cleanable interface

GType cleanable_get_type() G_GNUC_CONST;
#define TYPE_CLEANABLE (cleanable_get_type())

#define CLEANABLE(object) \
(G_TYPE_CHECK_INSTANCE_CAST((object), TYPE_CLEANABLE, Cleanable))

#define IS_CLEANABLE(object) \
(G_TYPE_CHECK_INSTANCE_TYPE((object), TYPE_CLEANABLE))

#define CLEANABLE_GET_CLASS(object) \

2.7.1 Interfaces 98

The Official GNOME 2 Developer's Guide

(G_TYPE_INSTANCE_GET_INTERFACE((object), TYPE_CLEANABLE, CleanableClass))

The type initializer (cleanable_get_type()) is very similar to that of a class (see Section 2.4.1). However, thel
are a few differences:

* You need only three fields in the GTypelnfo structure.
» Base initializer and base finalizer functions are not NULL.

The code you're about to see also includes the base initializer and finalizer for the Cleanable interface. Thes
do nothing more than manipulate a global variable that serves as a reference counter. When the counter go
from O to 1, or from 1 to 0, you may want to do something special with the interface. In the following
examples, empty code blocks indicate where to place this code.

This process is somewhat clumsy, but it's necessary because interfaces are not derived from GObject and t
have no common class initializer.

static guint cleanable_base_init_count = 0;

static void cleanable_base_init(CleanableClass *cleanable)
cleanable_base_init_count++;
if (cleanable_base_init_count == 1)

/* "constructor" code, for example, register signals */
}
}

static void cleanable_base_finalize(CleanableClass *cleanable) {
cleanable_base_init_count—-;

if (cleanable_base_init_count == 0)

/* "destructor" code, for example, unregister signals */
}
}

GType cleanable_get_type(void)

{
static GType cleanable_type = 0;

if (Icleanable_type)
{
static const GTypelnfo cleanable_info = {
sizeof(CleanableClass),
(GBaselnitFunc) cleanable_base_init,
(GBaseFinalizeFunc) cleanable_base_finalize

h

cleanable_type = g_type_register_static(G_TYPE_INTERFACE,
"Cleanable",
&cleanable_info,
0);

}

return cleanable_type;

}

2.7.1 Interfaces 99

The Official GNOME 2 Developer's Guide

Implementing and Installing an Interface

Every class that implements an interface must advertise the implementation. The relevant function call here
g_type_add_interface_static(class_type_id, interface_type_id, info)

Place this call in your type registration function (for example, cd_get_type()). The arguments here are as
follows:

« class_type_id_(GType): The implementing class type identifier.
« interface_type_id_(GType): The interface type identifier.
« info (const Ginterfacelnfo *): Contains these fields:

¢ interface_init (GinterfacelnitFunc): GObject calls this function to initialize the interface when
you cast an object from the implementing class to the interface.

¢ interface_finalize (GinterfaceFinalizeFunc): GObject runs this function when the interface is
no longer needed.

¢ interface_data (gpointer): Optional data that you may pass to either of the preceding
functions.

The code for installing the interface in cd_get_type() follows; eighttrack _get type() is similar.

static void cd_cleanable_init(gpointer interface, gpointer data);
GType cd_get_type(void)

static GType cd_type = 0;

i{f (fcd_type)

const Glinterfacelnfo cleanable_info = {
cd_cleanable_init, NULL, NULL

I3

<< type initializing code >>

/* add interface */
g_type_add_interface_static(cd_type, TYPE_CLEANABLE, &cleanable_info);

return cd_type;

}
Here are the type definitions for GinterfacelnitFunc and GlinterfaceFinalizeFunc from the GLib header files:

typedef void(*GInterfacelnitFunc) (gpointer g_iface, gpointer iface_data);

typedef void(*GinterfaceFinalizeFunc) (gpointer g_iface, gpointer iface_data);

Normally, this class—specific interface initialization function does nothing other than verify that the interface
is ready and then install the actual interface implementation function. For the CD class, this function is name
cd_clean().

When verifying the interface, recall from the previous section that the Cleanable class used a
cleanable_base_init_count global variable to keep track of reference counts. If the interface is ready, that

2.7.1 Interfaces 100

The Official GNOME 2 Developer's Guide

count is greater than zero:

void cd_clean(Cleanable *cleanable);

static void cd_cleanable_init(gpointer interface, gpointer data)

{

CleanableClass *cleanable = interface;

g_assert(G_TYPE_FROM_INTERFACE(cleanable) == TYPE_CLEANABLE);
/* is the interface ready? */
g_assert(cleanable_base_init_count > 0);

cleanable—>clean = cd_clean;

}
Here is the implementation of cd_clean():

void cd_clean(Cleanable *cleanable)

{
IS_CD(CD(cleanable));

g_print("Cleaning CD.\n");
}

The interface code for EightTrack is nearly identical.

One issue remains: how to bring the Cleanable implementations for CD and EightTrack into a single
method called clean(). This method takes one Cleanable * object argument (an untyped pointer, of sorts) an
runs the implementation that matches the class behind the object. The general procedure is as follows:

1. If the argument doesn't implement the interface, abort.

2. Retrieve the class—specific interface from the object.

3. Add a reference to the object, so that GObject doesn't delete the object in the process of running the
interface.

4. Call the class—specific interface function.

5. Remove the extra reference to the object.

Here is the code:

void clean(Cleanable *object)

{

CleanableClass *interface;
g_return_if_fail(IS_CLEANABLE(object));

interface = CLEANABLE_GET_CLASS(object);
g_object_ref(object);

interface—>clean(object);
g_object_unref(object);

This short survey of the inner workings of interfaces is probably far more than you will ever need to know. In
practice, you will use standard interfaces, not build your own. Therefore, this section concludes with a short
demonstration of how to use the new interface on the cd and eighttrack objects created earlier in this chapte

2.7.1 Interfaces 101

The Official GNOME 2 Developer's Guide

clean(CLEANABLE(cd));
clean(CLEANABLE(eighttrack));

2.8 Further Topics

As with GLib, the topic of GObject and its API is rather broad. Here are some more topics that aren't covere
in this chapter:

» GBoxed: A data type and API that allows you to wrap C structures into opaque data types. The most
prominent boxed typed_is GValue.

» GValueArray packs several GValue elements into an array. Its APl is similar to that of GList.

» GClosure: GSignal calls unnamed functions with the help of closures; GClosure functions start with
g_closure_.

« g _enum_*, g flags_* are several functions and types that involve finite sets such as enumeration
types and bitwise options.

2.8 Further Topics 102

Chapter 3: GTK+

3.1 What Is GTK+?

GTK+ is a toolkit for programming graphical user interfaces. In the earlier days of the X Window System
(version 11, or X11), the only toolkit that looked halfway decent and had any sort of popularity was Motif.
Other toolkits came and went, but when Spencer Kimball and Peter Mattis decided to write an
image—processing program in 1995, Motif was handy, so they used it.

This program (later to be called The GIMP) was distributed as free software and soon gained a small
following. However, Motif was a commercial library, preventing widespread use. Therefore, Kimball and
Mattis decided to do what John Bradley had done with XV: write their own toolkit, GTK (The GIMP
Toolkit). GTK debuted in July 1996 [Bunks]. At the beginning, it had three library components: GLib as a
fundamental library, GDK as an interface to X11, and GTK on top of these.

Somewhere along the line, GTK acquired object—oriented capabilities. Graphical components could now
inherit from others, and the basic signal system that we have today was introduced. In honor of the new
object-oriented features, the developers decided to rename the toolkit GTK+ [Amundson].

In GTK+ version 2.0 (March 2002), the object-oriented pieces left GTK+, forming the more general GObject
system. In addition, GTK+ became platform independent by adding more back ends to GDK. Two new
components appeared, Pango, a powerful library for text rendering, and ATK, an accessibility toolkit. At that
point, GTK+ had no reason to be shy in comparisons to any other toolkit.

GTK+ has been free software from day one, distributed under the terms of the GNU LGPL. This is part of th
reason that it was chosen as the toolkit for the GNOME project. Not every GTK+ application is a GNOME
application (see Section 4.1), but all GNOME applications use GTK+. Therefore, this chapter is a
point—-by-point explanation of GTK+'s features; the later chapters show how GNOME builds on GTK+.

This chapter does not cover GTK+ components with an equivalent in the GNOME libraries. In addition, the
material and examples follow GNOME Usability Project guidelines [GUP].

GUI programming has one principal concept regardless of the particular toolkit: Widgets are pieces that the
user normally manipulates or views (for instance, scrollbars and buttons are widgets; however, not all widge
are visible). All widgets are GObjects and expose many of their features with the help of GObject properties
Containers organize widgets into groups. Furthermore, events are emitted as signals in response to user inf
In GTK+, you can attach signal handlers to trap these events.

Note This book tries to cover as few API functions as possible, explaining only the functions that do
something that you cannot otherwise achieve by manipulating properties. GTK+ is full of access
functions that do nothing other than change properties, and you can do that with the GObject API.

Keep in mind that properties always have some underlying code. When you change a widget property, the
widget changes (as long as the property isn't write protected, that is).

Chapter 3: GTK+ 103

The Official GNOME 2 Developer's Guide

3.1.1 Widgets and Containers

Containers are widgets that hold other widgets and are responsible for the layout of the user interface. The
most obvious containers are windows most widgets in an application go into a window.

Other containers include box and table widgets that organize other widgets into a particular place or order.
After nesting several containers, you get an application or dialog box look and feel. The act of putting a
widget into a container is called packing, and a widget inside of a container is the container's child. An entire
hierarchy of containers and widgets is a widget tree.

Note A widget may not be in more than one container at a single time. In other words, it may not be the chilc
of several containers.

You can't see a widget when you create the object; you must explicitly request that it appear. You can
manipulate and combine widgets without seeing them on your monitor. It isn't a good idea to show a window
and then put in every widget; instead, you should work out the representation details when the window is
invisible, and then show everything with one shot when you are finished.

It's also possible to hide visible widgets without losing their representation in memory. For example, you
might want to hide tool palettes, property windows, and certain dialog boxes. If you hide rather than destroy
these widgets, you won't have to worry about creating new instances when you want to show the windows
again.

Note A widget's precise appearance depends on your current GTK+ theme. Themes vary greatly in
implementation and details anything is possible, from a new set of colors to an entire new code
module that controls what the window draws. Figures 3.1, 3.2, and 3.3 illustrate three different themes.
(See_Figure 3.3 on the next page.) All other screenshots in this book use the GTK+ Default theme.

e [
- I’,irtnr—n,*‘u(l monitor LI
A-l
- ™ Run in terminal Append Fie I
= Known Application:
A Sound A}
w Systemn Log
=
8 Termina -
=
View current processes and monitor system state
< TR S|
O Help X Cancel I o9 Run I

Figure 3.1: GNOME Run Program dialog box in the Default theme.

3.1.1 Widgets and Containers 104

The Official GNOME 2 Developer's Guide

‘Program ' "W x|
[;' Ome-sy stém-montor l-J
=) Run in terminal Append File |
= Known Apphcabons
A Sound ‘
3 System Menitor [
& Terminal ‘
\T:.‘. ‘_\Ax;r»-r-:l ; 1"« .r- and mondcr system state
I Ol Help X Cance | I S5 Run l
Figure 3.2: GNOME Run Program dialog box in the Crux theme.
s/ Run Program b4
[;'l,lur—»a‘,‘”-r‘ﬁ"l-l" * v
;‘—-J Run in ferminal Append File
= Known Application

a
s System Log

8 System Monitor
=)

Terminal

Vew current processes and mondor sy stem state
v\ ~ - o
L Help X Coancel o9 Hun

Figure 3.3: GNOME Run Program dialog box in the Grand Canyon theme.

3.1.2 Event-Driven Programming

In contrast to the traditional top—to—bottom programs that you typically run on the command line, graphical
programs usually consist of a collection of objects that wait for actions (from a user, the network, and so on)
The actions trigger small pieces of code that often manipulate other objects.

This system is called event—driven programming. The windowing system transmits events such as key
presses and mouse clicks when GTK+ is in a main event loop. GTK+ determines the corresponding widget
and then emits an appropriate signal. The actual mechanism is GSignal, covered in Section 2.6.

It's important to recognize the difference between events and signals. Events come from outside GTK+ and
typically enter through the main loop, where they reach a widget. Ordinary signals are internal to the
application. Of course, every event usually leads to a signal emission. Certain signals that end with —event ¢
called event signals; GTK+ emits these directly when it gets an event. A handler for an event signal returns
Boolean value; if this is TRUE, the signal emission immediately halts.

3.1.3 An Elementary Example

GTK+ resides primarily in a library that reflects the back end. For X11, the library is libgtk—x11-2.0, with a
number of auxiliary subsystem libraries. Sometimes it can be hard to tell what libraries you need, so use the
pkg—config command with your compiler command to do all of the hard work for you (see Section 6.1). The
only header file you need for GTK+ is gtk/gtk.h; this file subsequently includes all of GLib, GObject, and
anything else you need.

The classic first example, derived from the first program in [Kernighan], is a program that prints Hello,
World. Your first GTK+ example should be as grandiose. Here it is:

3.1.2 Event-Driven Programming 105

The Official GNOME 2 Developer's Guide

[* —*—coding: utf-8;—*- */
[* gtkhello.c —— traditional GTK+ Hello program */

#include <gtk/gtk.h>

void hello(GtkWidget *widget, gpointer data)
{
g_print("Hello, World!\n");

}

gint delete_event(GtkWidget *widget, GdkEvent event, gpointer data)
{
/* when this function returns FALSE, the delete—event
signal becomes a destroy signal */
return FALSE;

}

void end_program(GtkWidget *widget, gpointer data)
{

/* End the main loop */

gtk_main_quit();
}

int main(int argc, char **argv)
{
GtkWindow *window;
GtkButton *button;

/* Initialize GTK+ */
gtk_init(&argc, &argv);

/* create window, set default height and width to 200 pixels */
window = g_object_new(GTK_TYPE_WINDOW,
"default-height", 200,
"default-width", 200,
"border—width", 12,
"title", "GtkHello",
NULL);

/* add signal handlers for window */
g_signal_connect(window,
"delete—event", G_CALLBACK(delete_event),
NULL);

g_signal_connect(window,
"destroy", G_CALLBACK(end_program),
NULL);

/* create a button */

button = g_object_new(GTK_TYPE_BUTTON,
"label", " _Hello, World"\nClick Here.",
"use—underline", TRUE,
NULL);

[* install signal handlers for button */
g_signal_connect(button,
"clicked", G_CALLBACK(hello),
NULL);

g_signal_connect_swapped(button,

"clicked", G_CALLBACK(gtk_widget_destroy),
window);

3.1.2 Event-Driven Programming

106

The Official GNOME 2 Developer's Guide

/* pack the button into the window, show all of its contents */
gtk_container_add(GTK_CONTAINER(window), GTK_WIDGET (button));

gtk_widget_show_all(GTK_WIDGET (window));

[* start main event loop */
gtk_main();

return O;

}

Compiling

To compile this simple program, use

gcc —o gtkhello gtkhello.c “pkg-config ——cflags —-libs gtk+2.0"

Naturally, you want to create a Makefile or use autoconf for larger applications.

Program Behavior

The gtkhello program opens a window, creates a big button labeled "Hello, World! Click Here" in the window
and waits for events (not just button clicks, but also things like window resizing). When you click the button,
gtkhello prints Hello, World! on the console, closes the window, and terminates. You can also close the

window (and stop the program) with the window manager that is, click whatever button corresponds to
Close in the title bar. See Figure 3.4 to see the final application.

w GtkHello 0O X

Hello, World!
Click Here.

Figure 3.4: Result of gtkhello program.
Program Structure

The gtk_init(argc_addr, argv_addr) function performs several GTK+ initialization tasks, for example, it runs
g_type_init() for you. The parameters are the addresses to argc and argv, the main program's command-lin
options. The gtk_init() function removes anything that it recognizes so that you don't have to deal with the
standard GTK+ options yourself.

Then gtkhello does the following:
1. Creates a new window by asking g_object_new() to create a GtkWindow widget (returned as a

pointer to the window variable). This call sets several properties: default-width, default—height,
border—width, and title; these set the window size to 200 pixels square, supply a 12-pixel border,

3.1.3 An Elementary Example 107

The Official GNOME 2 Developer's Guide

and set the title of the window to GtkHello.

2. Attaches new signal handlers for delete—event and destroy: delete_event() and end_program().

3. Creates a new button object (button) of the GtkButton class, with the "Hello World" string as a label.

4. Attaches hello() to the clicked signal handler for button.

5.Uses g_signal_connect_swapped() to attach gtk_widget_destroy() to the same clicked signal, so tha
GSignal can pass window to the handler as a parameter. It also packs the button into the window wit
gtk_container_add(), displays the window and button with gtk_widget_show_all(), and calls
gtk_main() to start the main event loop.

Binding Code to Signals

Some signal handler names are nearly identical to their signals: gtkhello binds delete_event() to the similarly
named delete—event. GTK+ emits delete—event with a GtkWindow object when the window manager
requests removal of the window. As mentioned in Section 3.1.2, this is an event signal, so the handler must
return a Boolean value. If this return value is FALSE, the emission continues, and GTK+ destroys the
window. The end_program() handler is also bound to delete—event; this function calls gtk_main_quit() to sto
the main event loop (and consequently, the whole program).

Note When you define handlers like this for delete—event, you can determine whether a window removal hal
your program. For example, if your application contains unsaved data, you can ask users whether they
really want to terminate the application.

GTK+ also offers gtk_widget_hide_on_delete() that you can employ as a handler for delete—event. With this
function, GTK+ hides a window in case you want to use it again. This is ideal for tool palettes and similarly
recurring windows.

Note GSignal treats — and _ as the same character, so you may see delete—event and delete_event used fo
same purpose. This book follows the online API documentation, using —.

The gtkhello program attaches hello() as a handler to button's clicked signal. It sends Hello, World! to the
console and does nothing else. It is interesting that gtk_widget_destroy() is a second handler for this widget
receiving window as a parameter: Upon emission of this signal, gtkhello prints the message, destroys the
window, and halts the program.

Note This function indirectly causes a destroy signal emission and therefore, a call to end_program(). In spit
of this, it wouldn't be wise to attach end_program() directly to clicked, because a program with a GUI
should shut down only when it has cleaned up after all of its widgets. By using this indirection, you don'
have to override the destroy handler, and therefore, you won't have to worry about any trash on the
beach (so to speak).

If you understood this small example and explanation, you probably also see that GTK+ programming is a
fairly straightforward, clean matter, guided by clear concepts. Everything else is just a matter of knowing the
details.

Character Encoding

You probably noticed this line at the very top of the program:

[* —*—coding: utf-8;—*- */

3.1.3 An Elementary Example 108

The Official GNOME 2 Developer's Guide

This UTF-8 indicator is important if your program contains accents or other characters that aren't 7—bit
ASCII, and you happen to use Emacs. Pango works on UTF-8 strings.

Most GTK+ and GNOME programs are in 7—bit ASCII and contain English strings. You can add translations
for other languages; see Section 6.5.

3.1.4 Widget Fundamentals

All GTK+ widgets are GtkWidget class (type identifier: GTK_TYPE_WIDGET) objects and are therefore
also members of the GtkObject class (GTK_TYPE_OBJECT), the base class for all GTK+ classes.

One particular technical curiosity of GtkObject widgets is that the reference counters work a little differently
than in normal GObject objects. A newly created widget object has a floating reference that the container
widget takes over when you pack the widget. This reference ensures that GTK+ sweeps up the widget upon
destruction of the container without removing extra references in your setup code.

The base GtkWidget class includes GTK+'s visible operational elements (methods, properties, and signals).
The next three sections outline the most important.

3.1.5 Methods

To show a widget, use
GtkWidget *widget;

gtk_widget_show(widget);

However, it's much more practical to use
gtk_widget_show_all(widget)

to show the widget and all of its children. You can see a widget only if all of its ancestors in the widget tree
are also visible.

Note When you show a widget or perform any other sort of operation that alters the appearance of a widget,
GTK+ doesn't change the widget on the screen immediately; instead, it normally waits until the progran
is in the main loop. If these miniscule fractions of sections actually matter to you, call

gtk_widget_show_now(widget)

This function returns only after everything on the screen appears as it should.

WarningCalling gtk_widget_show_now() is akin to running the main loop, so GTK+ can process events and
emit signals unrelated to the widget at hand during this time.

The converse of showing a widget is hiding the widget; use one of these two methods:

gtk_widget_hide(widget)
gtk_widget_hide_all(widget)

To completely eradicate a widget, use

3.1.4 Widget Fundamentals 109

The Official GNOME 2 Developer's Guide

gtk_widget_destroy(widget)

Widget destruction is an important part of several of this book's examples.

3.1.6 Properties
The most important gboolean widget properties are:

« visible: TRUE if the widget is visible.

« sensitive: FALSE if the widget is inactive (dimmed). When inactive, a widget does not respond to
input.

« can—focus: TRUE if the widget can grab the input focus.

» has—focus: TRUE if the widget has the input focus.

« can—default: TRUE if the widget is allowed to become its window's default widget.

» has—-default: TRUE if the widget is its window's default widget.

« receives—default: TRUE if the widget becomes the default widget when its window gets the input
focus.

The default widget receives the input after its window opens and should therefore be one of the least
"dangerous" widgets. In dialog boxes, this is normally the button at the lower right. The default widget's
purpose is to enable better keyboard operation; for example, the user can operate a default button on a dials
box by pressing the ENTER key.

3.1.7 Signals

GtkWidget objects have plenty of associated signals; most applications ignore the vast majority of them.
Here are the three most practical signals, along with their handler prototypes:

* delete—event
gboolean handler(GtkWidget *widget, GdkEvent *event, gpointer data)
This is an important signal for windows, because GTK+ emits this when the window manager wants
to delete widget (for example, when you click a Close button in the title bar). As with other event
signals, the handler gets the actual event through the event parameter. You can safely ignore the
event. Your handler should return TRUE if you want the signal emission to stop immediately.

* show

void handler(GtkWidget *widget, gpointer data)

GTK+ emits this signal when widget becomes visible.
* hide

void handler(GtkWidget *widget, gpointer data)

GTK+ emits this signal when widget is hidden.

3.1.6 Properties 110

The Official GNOME 2 Developer's Guide

3.2 Windows

There is a window in Section 3.1.3's example program; you can see that it is a container widget object of the
GtkWindow class (type identifier: GTK_TYPE_WINDOW).

To set a window's title, write a string into its title property. The user should be able to distinguish the
window's title in a list of windows (for example, in a window manager menu). An application window's title
ideally stems from the document currently in that window a filename, directory, or similar. If you insist on
including the application name in the title, place it after the document name, but GNOME guidelines advise
even against this. Any other information in the title bar is essentially a waste of(Space.

Here are several versions of the same title and how they rank:

» Good: Order.mtx

» Not so great: Order.mtx — MiracleText

 Poor: MiracleText: Order.mtx

* Really bad: MiracleText 0.16.7 (CVS BUILD #1247)

If a window doesn't contain a document, the naming conventions are somewhat different:

« Application windows: Name of the application (LavaLamp).

 Property windows: Name of object — Properties (Table 3.1 — Properties).

 Preferences windows: Name of the application — Preferences (MiracleText — Preferences).

« Warnings: No title. Windows containing warnings should display their information as a short blurb
inside the window; if you put the same thing in the title bar, it would show up twice on the screen anc
look a little confusing. Well, that's what the guidelines say, at least. My opinion is that a short title
such as Warning or Info never hurt anyone. Furthermore, nameless windows look a little odd in a
window manager's list. Section 3.10 covers dialog boxes and the titles that GTK+ may automatically
supply.

« Druids (assistants): Name of the druid (Configure Coffee Machine); for more information on druids,
see Section 4.3.15.

Significant GtkWindow properties and their types include the following:
« resizable (gboolean): If TRUE, the user may change the window's size.

Notelt's practically never a good idea to set this property to FALSE, thereby making it impossible for
users to adjust the window to their preferences. If you set up your container layout properly, the
contents remain usable and in proper order at any size.

modal (gboolean): When TRUE, this is a modal window. None of the application's other windows

respond to input as long as the modal window exists.

WarningIn most modern applications, modal windows are completely unnecessary. You should try tc
do without modal windows, because users tend to become frustrated when a window ignore
their input due to some hidden dialog box.

» window—position (GtkWindowPaosition): This property determines where the window will appear on
the display. The possible values are:

3.2 Windows 111

The Official GNOME 2 Developer's Guide

¢ GTK_WIN_POS_NONE: Let the window manager decide where it wants to put the window.
This is the default.
¢ GTK_WIN_POS_CENTER_ON_PARENT: Place the window on top of the parent, using the
parent's center as its center.
¢ GTK_WIN_POS_CENTER: Put the window in the center of the monitor, at least as much as
possible.
¢ GTK_WIN_POS_CENTER_ALWAYS: Try to keep the window centered, even if the
window size changes.
¢ GTK_WIN_POS_MOUSE: Place the window as close to the mouse pointer as possible.
All of these values assume that the window manager cooperates that is, it understands and follows
NET_WM_hints[XDG].
« default-width (gint): The default width, as seen in the previous example.
« default-height (gint): The default height.

Note If you decide to force the size of a window, at least use some sensible proportions: for example
a 1:1.6 ratio (the golden section).
« destroy—-with—parent (gboolean): If TRUE, GTK+ will destroy this window upon the destruction of
the window's parent.
« icon (GdkPixBuf; see Section 3.3.2): The window's icon. The icon should closely resemble that of its
menu item or any other graphical means of starting the application.

3.2.1 Icons

In any polished application, you should outfit your window with an icon that appears in the window list and
other places. These routines install icons:

« gboolean gtk_window_set_icon_from_file(GtkWindow *window, const char *filename, GError
**error)

Sets the icon for window to the image in filename, returning TRUE upon success.
« void gtk_window_set_icon(GtkWindow *window, GdkPixbuf *pixbuf)

Like the preceding function, but uses pixbuf instead of a filename and does not return a value.
« void gtk_window_set_icon_list(GtkWindow *window, GList *pixmap_list)

Like the preceding function, but uses the first available pixmap in the pixmap_list.
 gboolean gtk_window_set_default_icon_from_file(const char *filename, GError **error)

Sets all of the current application's icons to the image in filename.

[LIGNOME has functions to keep application window titles consistent see Section 4.3.1.

3.3 Display Widgets

Among the most elementary widgets, display widgets do nothing other than show something to the user fol
example, text, pictures, and progress.

3.2.1 Icons 112

The Official GNOME 2 Developer's Guide

« Label: A short piece of text that describes a nearby widget. Pango makes it easy to format labels.
Labels aren't suitable for large amounts of text; see the text buffer and text view widgets in Section
3.12 for alternatives.

 Image: Displays a picture on the screen. These types of widgets work in conjunction with
GdkPixbuf, a GDK interface that permits you to load and display image files in nearly every common
format.

 Progress bar: Shows the user how far the application has progressed in a certain task. Progress bar
can show the user exactly how far an application has gone. If the application doesn't quite know how
long an operation will take, a progress bar can go into activity mode to show that something is
happening (this looks a bit like the Cylon lights in Battlestar Galactica).

The rest of this section is a small demonstration of these widgets. The first part of the program consists of tt
usual GTK+ declarations and event handlers:

[* —*—coding: utf-8;—*- */
/* display.c —— demonstrate display widgets */

#include <gtk/gtk.h>
#include <math.h>
const gdouble PROGRESS_STEP = 0.05;

/* standard handlers */
gint delete_event(GtkWidget *widget, GdkEvent event, gpointer data) {
return FALSE;

}

void end_program(GtkWidget *widget, gpointer data) {
gtk_main_quit();

The function that follows is a handler for a progress bar. It is a very concrete example of how an event on a
widget object causes a signal emission, eventually leading the handler to manipulate another object.

There are two GtkProgressBar properties in this handler: fraction, a number between 0 and 1 indicating how
much of the progress bar is filled, and text, a text string to render on top of the progress bar. Section 3.3.3
contains more information about progress bars.

/* bump the display counter on the given
GtkProgressBar one PROGRESS_STEP further */
void advance(GtkButton *button, gpointer progress_ptr)
{
GtkProgressBar *progress_bar = GTK_PROGRESS_BAR(progress_ptr);
gdouble current;
gchar *embedded_text;

g_object_get(progress_bar, "fraction”, ¤t, NULL);
current += PROGRESS_STEP;
current = CLAMP(current, 0.0, 0.999);
embedded_text = g_strdup_printf("%3.0f%% completed", current*100);
g_object_set(progress_bar,
"fraction", current,
"text", embedded_text,
NULL);
g_free(embedded_text);
}

3.2.1 Icons 113

The Official GNOME 2 Developer's Guide

The main program comes next. Many normal declarations, gtk_init(), creation of the main window, and
attachment of its destroy signal handlers, are here:

int main(int argc, char **argv)
{
GtkWindow *window;
GtkVBox *vbox;
GtkLabel *label, *label_markup;
Gtkimage *image;
GtkHBox *progress_bar_box;
GtkProgressBar *progress_bar;
GtkButton *pulse_button, *advance_button;

[* initialize GTK+, create a window, attach handlers */

gtk_init(&argc, &argv);

window = g_object_new(GTK_TYPE_WINDOW,
"title", "Display Widgets",
"border-width", 12,
NULL);

[* attach standard window event handlers */
g_signal_connect(window, "delete_event", G_CALLBACK(delete_event), NULL);
g_signal_connect(window, "destroy", G_CALLBACK(end_program), NULL);

This little piece creates a subcontainer widget called a VBox. The items in a VBox stack vertically:

[* create a vertical box and pack it into window */
vbox = g_object_new(GTK_TYPE_VBOX, "spacing", 6, NULL);

gtk_container_add(GTK_CONTAINER(window), GTK_WIDGET(vbox));

You're ready to see the first GtkLabel. This one carries a small, unadorned message. This text goes in the
label property.

[* a new label. */
label = g_object_new(GTK_TYPE_LABEL,
"label", "When lilacs last in the door—yard bloom'd.\n \
Fonts normally do not support all markup attributes:",
NULL);

gtk_box_pack_start_defaults(GTK_BOX(vbox), GTK_WIDGET(label));

Labels can be quite fancy, because Pango understands a type of markup language that you activate with th
use—markup property. Notice that this (somewhat gaudy) example also sets the wrap property, telling Pangc
to wrap text lines if they get too long. These properties and others are in Section 3.3.1. (Yes, the program
looks a little ugly.)

[* a label with extensive markup */
label_markup = g_object_new(GTK_TYPE_LABEL,
"wrap", TRUE,
"use-markup", TRUE,
"label", "\
Courier — \
Charter — \
Times - \
Verdana - \
Tiny — \
Extra Small — \
Small — \

3.2.1 Icons 114

The Official GNOME 2 Developer's Guide

Medium - \

Large - \

Extra Large — \
Huge — \

Gigantic — \

\

Oblique — \

Italic — \

\

Ultra Bold — \
\
Caps and Small Caps - \

Condensed - \
H20 -\

Inverse -\
Important — \
Strikethrough\
\n\

The <tt>span</tt> tag appears to function \

well. However, it's <i>easier</i> to use \

short forms[*].\n\

\n\

<small>^{*)} short tags that work just\

the same as <tt>span</tt> with corresponding \
attributes</small>");

gtk_box_pack_start_defaults(GTK_BOX(vbox), GTK_WIDGET (label_markup));

The following statements create a Gtkimage object to display a picture of an apple (apple—green.png).
Section 3.3.2 goes into far more detail on images.

/* a Gtkimage */
image = g_object_new(GTK_TYPE_IMAGE, "file", "apple—-green.png", NULL);
gtk_box_pack_start_defaults(GTK_BOX(vbox), GTK_WIDGET(image));

This code creates the progress bar mentioned earlier:

/* a progress bar with buttons to advance the progress or pulse activity */
progress_bar_box = g_object_new(GTK_TYPE_HBOX, "spacing", 6, NULL);
gtk_box_pack_start_defaults(GTK_BOX(vbox), GTK_WIDGET(progress_bar_box));

These two buttons seem nearly identical at first, but notice that pulse_button gets a built—in signal handler,
gtk_progress_bar_pulse(), described in Section 3.3.3.

advance_button = g_object_new(GTK_TYPE_BUTTON,
"label", "_Advance",
"use—underline", TRUE,
NULL);

pulse_button = g_object_new(GTK_TYPE_BUTTON,
"label", " _Pulse",
"use—underline", TRUE,
NULL);

gtk_box_pack_start_defaults(GTK_BOX(progress_bar_box),
GTK_WIDGET (advance_button));

gtk_box_pack_start_defaults(GTK_BOX(progress_bar_box),
GTK_WIDGET (pulse_button));

progress_bar = g_object_new(GTK_TYPE_PROGRESS_BAR, NULL);

3.2.1 Icons 115

The Official GNOME 2 Developer's Guide

gtk_box_pack_start_defaults(GTK_BOX(progress_bar_box),
GTK_WIDGET(progress_bar));

g_signal_connect(advance_button,
"clicked", G_CALLBACK(advance), progress_bar);

[* attach a builtin GTK+ handler to pulse the progress bar */
g_signal_connect_swapped(pulse_button,
"clicked", G_CALLBACK(gtk_progress_bar_pulse), progress_bar);

We're finally ready to see the final window and start the main event loop.

[* show window and begin GTK+ main loop */
gtk_widget_show_all(GTK_WIDGET (window));
gtk_main();

return O;

}

Figure 3.5 shows the final application. It's much easier to understand this program when you run it, so if you
haven't retrieved the source code yet, this might be a good time to think about it (see the introduction for mo
information).

w Display Widgets - O X
When Macs last in the dooryard biocom'd
Fonts noemally do not support all markup antrnbute
Courier = Charter - FT -
Medum - Large - Extra L'lrge Huge
Glgantlc = Ootyne -t - B
v and Small Caps ﬂn1b1,~-
Importard ~M
The tag o ' ton well However £'s easier I«
use short lum'
short tags that work just the e a3 o5 an wih comesponding atinbutes
Advance 1 I_I 15% compieted

Flgure 3.5: Display widgets.
3.3.1 Labels and Pango Markup

As you can see from the example in_the previous section, it's not very hard to put a string into a label; just
create a GtkLabel (GTK_TYPE_LABEL) object and set its label property.

A label with Pango formatting is only a little more complex. Set the label's use—markup property to TRUE so
that you can use markup language directives.

Pango markup has few tags when compared to a cousin such as HTML. The most important tag pair is <sp:
.. </[span>. You can put any text inside this pair and even nest other tags. The tag does
nothing on its own; you must supply at least one of these attributes:

« font_desc=string: Sets the text with the full font description string. An example of such a description
is "Times ltalic 12". Other attributes have precedence over font_desc. You can look up font
descriptions with any number of GTK+ font chooser programs, including the one in Section 3.6.8.

« font_family=font: Selects a typeface family, such as Times or Sans.

» face=font: Identical to font_family.

* size=value: Controls the font size. There are three ways to do this:

3.3.1 Labels and Pango Markup 116

The Official GNOME 2 Developer's Guide

¢ A number representing the actual size in thousandths of a point. For example, a 10—point
type size translates to 10000.

¢ An absolute description: Pick one of xx—small, x-small, small, medium, large, x-large, and
xx-large.

¢ A relative description: Use smaller to get text smaller than the current text, and larger for the
other way around.

« style=string: Changes the style of the typeface; choose one of normal, oblique (leaning to the right),
and italic. Most typeface families do not support both obliqgue and italic; one usually substitutes for
the other.

 weight=string: Indicates how thick the typeface appears; possible values are ultralight, light, normal,
bold, ultrabold, and heavy. You can specify a number instead (to serve as reference, ultralight is 20C
normal is 400, ultrabold is 800, and heavy is 900). Keep in mind that very few typefaces actually
support all of these weights.

« variant=string: Specifies normal, or smallcaps for caps and small caps. Few typefaces support small
caps.

« stretch=string: Specifies the width of each character. Possible values, from narrow to wide, are
ultracondensed, extracondensed, condensed, semicondensed, normal, semiexpanded, expanded,
extraexpanded, and ultraexpanded . Again, typefaces with all of these are rare.

 background=color: Controls the text background color. This can be an RGB specification such as
#AACC40 or an X11 color name such as midnightblue. For a complete list of color names on a Unix
system, consult /usr/X11R6/lib/X11/rgb.txt (it's quite a poetic collection, including honeydew, rosy
brown, and medium spring green).

« foreground=color: Controls the text color (the specification is as for background=color).
« underline=style: Draw lines underneath the text. The values are:

¢ single for a single line.
¢ double for two lines.
¢ low to place a line underneath all descenders.
¢ none for no underlining.
* rise=number: Shifts the text vertically, in thousandths of an em; number may be negative.
« strikethrough=value: If value is true, Pango renders the text with a horizontal line drawn straight
through each character.
« lang=language: Selects the text's language. The value is a code as per RFC 3066/1SO 639: for
example, en for English, es for Spanish, de for German, fy for Frisian, or i—klingon for Klingon.

There are some abbreviation tags that you can use for convenience. For example, ... is short for
 ... </pan>.

Abbreviation [Full Version

<big>

<i>

<s>

<sub> (subscript)
<sup> (superscript)
<small>

<u>

<tt> Use a monospaced (nonproportional) font

3.3.1 Labels and Pango Markup 117

The Official GNOME 2 Developer's Guide

Note Even though you have all of these formatting possibilities, try not to go too crazy. Use bold or italic
fonts for emphasis and relative font sizes for superscripts or warnings (see the guidelines for dialog
boxes in Section 3.10). Try to avoid absolute font sizes and don't arbitrarily mix and match typefaces.

Other important GtkLabel properties include the following:

« use-underline (gboolean): If TRUE, you can put an underscore in front of a letter in the label to
denote a keystroke.

« mnemonic—-widget (GtkWidget): The widget to activate when the user presses the key mentioned in
the preceding property.

« justify (GtkJustification): Determines the text justification. Possible values are:

¢ GTK_JUSTIFY_LEFT
¢ GTK_JUSTIFY_RIGHT

¢ GTK_JUSTIFY_CENTER
¢ GTK_JUSTIFY_FILL (fills in space between words; works only with multiline text)
« wrap (gboolean): If TRUE, Pango wraps long lines of text.
« selectable (gboolean): If TRUE, the user may select text inside the label with the mouse.
« cursor—position (gint, read—only): The position of the selection described in the preceding property;
the number of characters between the beginning of the text and the start of the selection.
« selection—-bound (gint, read-only): The number of characters in the selection.

When you create labels for your application, try to be as consistent and unambiguous as possible. Here are
some tips:

« Left-justify your labels unless you have an important reason for doing otherwise.

» Make labels for user elements expressive enough for a sight-impaired user to know what the elemel
does. A screen reader shouldn't need to need to read everything in a window before the user can tak
action. Dialog boxes, in particular, are something to watch out for.

 Place any labels for large icons and images underneath the picture, akin to a book's captions for
illustrations.

 Put a label accompanying a small icon directly to the right of the icon. The icon serves as a visual
point of entry.

« If a label describes a large area containing widgets, such as a list or group of buttons, place the labe
above the area.

» As was the case for small icons, labels for small widgets such as check boxes and radio buttons go 1
the right of these elements.

* When placing a label to the left of a widget because you want the user to read the whole as a senter
(such as a label next to a small text—entry box), end the label with a colon so that there is a clear
connection between the label and widget.

» Don't use the same label text (or very similar text) in the same window.

3.3.2 Images and GDK Pixbufs

To represent an image, create a Gtkimage (GTK_TYPE_IMAGE) widget and set its file property to the
filename of an image.

GDK works behind the scenes with the GdkPixbuf class (GDK_TYPE_PIXBUF), GDK's fundamental class

for image data. GDK understands many different graphics file formats, including JPEG, GIF, PNG, ICO,
PNM, RAS, TGA, TIFF, Windows BMP, XPM, and even SVG. The image loader is modular, so GDK adds

3.3.2 Images and GDK Pixbufs 118

The Official GNOME 2 Developer's Guide

new format support from time to time.

In addition to loading your own files, you can select an image from a library of stock images. The
fundamental Gtkimage properties for loading and storing images are as follows:

« pixbuf (GdkPixbuf): The image data buffer.

« pixbuf-animation (GdkPixbufAnimation): The image data, if the image is animated.

« file (gchararray, write—only): An image file for GDK to load into the image buffer.

« stock (gchararray): The identifier for one of the GTK+ stock images, if you wish to display one.

« icon-size (gint): The desired size of the stock image (above).

« storage-type (GtkimageType, read-only): The representation type of the image in memory. Possible
values include

¢ GTK_IMAGE_EMPTY: No image data present (yet).

¢ GTK_IMAGE_PIXBUF: The image came from a file or GdkPixbuf.

¢ GTK_IMAGE_STOCK: The image is part of a stock image library.

¢ GTK_IMAGE_ANIMATION: The image contains GDK Pixbuf animation.

GdkPixbuf

If you need to alter the image for display, or if you just want more control, you can create your own
GdkPixbuf objects.

Note Gtkimage stores its own data. Therefore, if you change a GdkPixbuf structure that you already have or
the screen, you must tell the Gtkimage object about this change, or nothing will happen on the screen.
You'll see this in the render_image() function for the example program further on in this section.

Here are the most important functions that operate on the GdkPixbuf type:

» GdkPixbuf *gdk_pixbuf_new_from_file(const gchar *filename, GError **error)
Loads the image in filename into an image buffer and returns a pointer to the buffer. If some problen
occurs in loading the image, this function returns NULL and sets error (the possible error classes are

GDK_PIXBUF_ERROR and G_FILE_ERROR).

Use g_object_unref() to free a pixbuf's memory.
« int gdk_pixbuf _get width(GdkPixbuf *pixbuf)

Returns the width of an image in pixels.
« int gdk_pixbuf_get height(GdkPixbuf *pixbuf)

Returns the height of an image in pixels.
» GdkPixbuf *gdk_pixbuf_copy(const GdkPixbuf *pixbuf)

Returns a complete copy of pixbuf (not just a reference).
« void gdk_pixbuf_copy_area(const GdkPixbuf *source, int src_x, int src_y, int width, int height,
GdkPixbuf *dest, int dest_x, int dest_y)

Copies an area width by height pixels starting at the coordinates (src_x, src_y) in source to the
coordinates (dest_x, dest_y) in dest. The origin (0,0) in a Pixbuf is at the upper left.

3.3.2 Images and GDK Pixbufs 119

The Official GNOME 2 Developer's Guide

» GdkPixbuf *gdk_pixbuf_scale_simple(const GdkPixbuf *pixbuf, int width, int height, GdkinterpType
interpolation)

Returns a copy of pixbuf scaled to width by height pixels. You can choose the interpolation method
from the following:

¢ GDK_INTERP_NEAREST: Nearest neighbor approximation is the fastest algorithm, but it
doesn't have very good results. It's unusable to scale down an image, but is acceptable for
enlarging in certain circumstances.
¢ GDK_INTERP_TILES: Tile interpolation is better than nearest neighbor; for example,
PostScript uses this method. In particular, it delivers better results when you reduce an
image's size.
¢ GDK_INTERP_BILINEAR: If you're looking for good interpolation with moderate CPU
time consumption, bilinear interpolation is usually a good choice.
¢ GDK_INTERP_HYPER: Hyperbolic interpolation delivers excellent results, but consumes an
enormous amount of processor time.
« void gdk_pixbuf_scale(const GdkPixbuf *source, GdkPixbuf *dest, int dest_X, int dest_y, int width,
int height, double offset_x, double y_offset, double scale_x, double y_scale, GdkinterpType
interpolation)

This extremely verbose function gives you fine control over how to scale an image. Scales source by
scale_x horizontally and scale_y vertically, shifts that result by offset_x (horizontally) and offset_y
(vertically), and pastes this into dest at (dest_x, dest_y); interpolation method as described in the
preceding function.

« void gdk_pixbuf_composite(const GdkPixbuf *source, GdkPixbuf *dest, int dest_x, int dest_y, int
width, int height, double x_offset, double y_offset, double scale_x, double scale_y, GdkinterpType
interpolation, int alpha)

Works like the preceding function, but rather than replacing the target pixels, adds the newly scaled
image as a transparent layer. This makes sense only if the source has transparent pixels or you spe
a number smaller than 255 as the transparency value alpha (domain: 0 to 255).

« gboolean gdk_pixbuf_get has_alpha(const GdkPixbuf *pixbuf)

Returns TRUE if a Pixbuf contains an alpha channel (transparency information).
» GdkPixbuf *gdk_pixbuf_add_alpha(const GdkPixbuf *pixbuf, gboolean substitute, guchar r, guchar
g, guchar b)

Returns a copy of pixbuf with an alpha channel. If substitute is TRUE, this function makes all pixels
that match the RGB color value given by r/g/b transparent. This function sets all other pixels to 255
(opaque) in the alpha channel.

« void gdk_pixbuf_saturate_and_pixelate(const GdkPixbuf *source, GdkPixbuf *dest, gfloat
saturation, gboolean pixelate)

Changes the saturation (color contrast) in source, pixelates the result (that is, if pixelate is TRUE),
and copies the result to dest. dest must exist ahead of time and have the same dimensions as sourc
you might want to copy source or use the same Pixbuf as source and target. The saturation value is
floating—point number greater than or equal to 0. At 0, the image becomes grayscale; 1.0 has no effe
on the image, and any larger number exaggerates the colors (for example, to provide the GTK+
insensitive icon effect).

« void gdk_pixbuf_fill(const GdkPixbuf *pixbuf, guint32 color)

3.3.2 Images and GDK Pixbufs 120

The Official GNOME 2 Developer's Guide

Fills pixbuf with color pixels. The color value is a four—byte representation of red, green, blue, and
alpha for example, Oxcececeff for opaque gray, 0x00000000 for transparent black, and Oxffffff80
for half-transparent white.

A simple demonstration of GdkPixbuf that uses slider widgets for scaling and saturation operations follows.
Figure 3.6 shows the end result.

w GdkPixbuf Demo - 0O X

Saturationc Zoom

Figure 3.6: Demonstration of saturation and scaling.
The first part of this program consists of signal handlers that you have already seen.

[* —*—coding: utf-8;—*- */
/* pixbufdemo.c —— GdkPixbuf demo */

#include <gtk/gtk.h>

[* standard handlers */
gint delete_event(GtkWidget *widget, GdkEvent event, gpointer data)

return FALSE;
}

void end_program(GtkWidget *widget, gpointer data)

gtk_main_quit();

The following function converts a number into a string, represented as a percent. You will see it in
conjunction with the image's zoom value.

/* rounds a number to the nearest whole percentage and
returns this (followed by %) in a newly allocated string */
gchar* percent(GtkScale *scale, gdouble number, gpointer data)

{
gint percent;
gchar *str;

percent = (gint)(number * 100);
str = g_strdup_printf("%d%%", percent);

return str;

}

The render_image()handler that follows demonstrates the saturation and scaling functions described earlier
this section. Notice that image comes through as the handler's data pointer, and that render_image() retriev

3.3.2 Images and GDK Pixbufs 121

The Official GNOME 2 Developer's Guide

several other parameters from image (you'll see where it all fits together later). The important points to notic
are how render_image() retrieves the original image, how it manipulates the image, and how it must tell the
image widget to display the newly manipulated image.

/* (re-)render the image when it changes */
void render_image(GtkWidget *adjuster, gpointer data)
{

Gtkimage *image;

GtkAdjustment *zoom, *saturation;

GdkPixbuf *orig_pixbuf, *new_pixbuf;

gint orig_width, orig_height;

gint new_width, new_height;

gdouble zoom_value, saturation_value;

image = (Gtkimage *) data;

[* get the original pixbuf dimensions */

orig_pixbuf = (GdkPixbuf *)g_object_get_data(G_OBJECT(image), "orig—pixbuf");
orig_width = gdk_pixbuf_get_width(orig_pixbuf);

orig_height = gdk_pixbuf_get_height(orig_pixbuf);

/* get adjuster—induced changes */

zoom = (GtkAdjustment *)g_object_get_data(G_OBJECT(image), "zoom");
zoom_value = gtk_adjustment_get_value(zoom);

saturation = (GtkAdjustment *)g_object_get_data(G_OBJECT(image), "saturation");
saturation_value = gtk_adjustment_get_value(saturation);

/* compute new size */
new_width = (gint)(orig_width * zoom_value);
new_height = (gint)(orig_height * zoom_value);

[* prevent a height or width of 0 */
new_width = MAX(1, new_width);
new_height = MAX(1, new_height);

/* scale the original pixbuf to the new dimensions
(feel free to try other interpolation algorithms) */
new_pixbuf = gdk_pixbuf_scale_simple(orig_pixbuf,

new_width,
new_height,
GDK_INTERP_BILINEAR);

/* modify the saturation on the newly scaled pixbuf
note that args 1 and 2 are the same */
gdk_pixbuf_saturate_and_pixelate(new_pixbuf,
new_pixbuf,
saturation_value,
FALSE);

[* display the new pixbuf in the image widget */
g_object_set(image, "pixbuf", new_pixbuf, NULL);
[* reference to new_pixbuf is no longer necessary,
the system may dispose of it when convenient */
g_object_unref(new_pixbuf);

WarningAfter passing new_pixbuf to the image widget, render_image() releases the Pixbuf reference. This i
important because render_image() creates a new object for new_pixbuf upon every invocation
(regardless of the old value). Therefore, there would be a big memory leak if GTK+ still thought that

3.3.2 Images and GDK Pixbufs 122

The Official GNOME 2 Developer's Guide

there was an active reference to the old Pixbuf. If you aren't careful, even a small program like this
could quickly grow to 50MB in active memory and beyond after the user plays around a little.
The main program starts with the usual mundane declarations and initializations.

int main(int argc, char **argv)

GtkWindow *window;
GtkHBox *hbox;

Gtkimage *image;

GtkVBox *zoom_box, *saturation_box;
GtkLabel *zoom_label, *saturation_label;
GtkVScale *zoom_slider, *saturation_slider;
GtkAdjustment *zoom, *saturation;

GdkPixbuf *orig_pixbuf;

[* initialize GTK+, create a window */

gtk_init(&argc, &argv);

window = g_object_new(GTK_TYPE_WINDOW,
"title", "GdkPixbuf Demo",
"default-width", 300,
"default-height", 300,
"border—width", 12,
NULL);

[* attach standard event handlers */
g_signal_connect(window, "delete_event", G_CALLBACK(delete_event), NULL);
g_signal_connect(window, "destroy", G_CALLBACK(end_program), NULL);

The first order of business is to load the image from the disk. However, recall from earlier that render_image
needs the original pixmap. This program couples the original pixmap to image with the help of an object dat:
extension named orig—pixmap.

/* create image widget and load a file */
image = g_object_new(GTK_TYPE_IMAGE, "file", "apple—-green.png", NULL);

[* store the original pixbuf in the image widget data */
g_object_get(image, "pixbuf’, &orig_pixbuf, NULL);
g_object_set_data(G_OBJECT(image), "orig—pixbuf", (gpointer)orig_pixbuf);

The next part looks somewhat confusing because slider widgets come later in the_book, in Section 3.6.5. Th
code creates a slider for scaling the image in the image widget; the values represented by the slider range f
0.01 to 7.5, and they will show up on the slider as 1% to 750%.

/* define storage for zoom slider */
zoom = GTK_ADJUSTMENT(gtk_adjustment_new(1.0, /* default */
0.01, /* minimum */
7.5, * maximum */
0.01, /* step increment */
0.1, /* page increment */
0.0)); /* page size */

/* create zoom slider */

zoom_slider = g_object_new(GTK_TYPE_VSCALE,
"draw_value", TRUE,
"value-pos", GTK_POS_BOTTOM,
"adjustment”, zoom,

3.3.2 Images and GDK Pixbufs 123

The Official GNOME 2 Developer's Guide
NULL);

/* create label for zoom slider */

zoom_label = g_object_new(GTK_TYPE_LABEL,
"label", "_Zoom:",
"use—-underline", TRUE,
"mnemonic-widget", zoom_slider,
NULL);

/* format the zoom slider's display as a percentage */
g_signal_connect(zoom_slider, "format-value", G_CALLBACK(percent), NULL);

/* put all of the zoom elements in a vbox */

zoom_box = g_object_new(GTK_TYPE_VBOX, NULL);
gtk_box_pack_start(GTK_BOX(zoom_box), GTK_WIDGET(zoom_label), FALSE, FALSE, 0);
gtk_box_pack_start_defaults(GTK_BOX(zoom_box), GTK_WIDGET(zoom_slider));

This code creates the saturation adjustment slider, with values from 0 to 5.0:

/* now do all of the above for a saturation slider */
saturation = GTK_ADJUSTMENT(gtk_adjustment_new(1.0, 0.0, 5.0, 0.01, 0.1, 0.0));

saturation_slider = g_object_new(GTK_TYPE_VSCALE,
"draw-value", TRUE,
"value-pos", GTK_POS_BOTTOM,
"adjustment", saturation,
"update—policy", GTK_UPDATE_DELAYED,
NULL);

saturation_label = g_object_new(GTK_TYPE_LABEL,
"label", "_Saturation:",
"use—underline", TRUE,
"mnemonic-widget", saturation_slider,
NULL);

saturation_box = g_object_new(GTK_TYPE_VBOX, NULL);
gtk_box_pack_start(GTK_BOX(saturation_box),
GTK_WIDGET (saturation_label),
FALSE, FALSE, 0);

gtk_box_pack_start_defaults(GTK_BOX(saturation_box),
GTK_WIDGET (saturation_slider));

As was the case with the original pixmap, render_image() needs to access the values in zoom and saturatio

[* store the adjuster widgets in the image object */
g_object_set_data(G_OBJECT(image), "zoom", (gpointer)zoom);
g_object_set_data(G_OBJECT(image), "saturation”, (gpointer)saturation);

Now the program must connect the render_image() handler that manipulates and redisplays the image whe
user changes a slider. Remember that this handler needs the Gtkimage object as its data pointer so that it ¢
access the original pixmap dimensions and other object data extensions above:

[* install adjuster signal handlers */

g_signal_connect(zoom, "value-changed",
G_CALLBACK(render_image), (gpointer) image);

g_signal_connect(saturation, "value-changed",
G_CALLBACK(render_image), (gpointer) image);

3.3.2 Images and GDK Pixbufs 124

The Official GNOME 2 Developer's Guide

Finally, the program can put all of the various containers together, show everything, and fall into the GTK+
main event loop:

/* create a new HBox, pack the image and vboxes above */

hbox = g_object_new(GTK_TYPE_HBOX, NULL);
gtk_box_pack_start_defaults(GTK_BOX(hbox), GTK_WIDGET(image));
gtk_box_pack_end(GTK_BOX(hbox), GTK_WIDGET(zoom_box), FALSE, FALSE, 3);

gtk_box_pack_end(GTK_BOX(hbox), GTK_WIDGET (saturation_box), FALSE, FALSE, 3);

[* pack everything into the window, show everything, start GTK+ main loop */
gtk_container_add(GTK_CONTAINER(window), GTK_WIDGET(hbox));
gtk_widget_show_all(GTK_WIDGET (window));

gtk_main();

return O;

}

If you want to see some more operations with GdkPixbuf, take a look at Eye of GNOME, the GNOME image
viewer. This application is easy to adapt for tests and demonstrations.

Stock Items and Images

GTK+ and GNOME include many prebuilt label strings for common tasks in GUI applications. A stock item
is the label, its key combinations, and other data. Stock items are convenient for example, you create a
standard, full-featured Cancel or OK button without much fuss; as a bonus, the button appears in the user's
native language.

There's another reason for using these stock items: They come with stock icons. Every icon is available in
several standard sizes (usually in pairs, for example, one size for menu items and something slightly larger |
toolbar buttons).

Each stock item has an identifier that you access with a macro (there is a string behind each macro in the
current implementation). For example, for the GTK+ Cancel stock item, use GTK_STOCK_CANCEL. You'l
find a list of the the GTK+ and GNOME stock items_in Appendix A.

As mentioned in Section 3.3.2, a Gtkimage object has a stock property for specifying a stock image and an
icon—size property for choosing one of these standard sizes:

* GTK_ICON_SIZE_MENU for menu entries (16 x 16 pixels).

* GTK_ICON_SIZE_SMALL_TOOLBAR for small tool items (18 x 18 pixels).

* GTK_ICON_SIZE_LARGE_TOOLBAR for large tool items (24 x 24 pixels).

« GTK_ICON_SIZE_BUTTON for buttons (20 x 20 pixels).

« GTK_ICON_SIZE_DND icons that represent drag—and—drop objects (32 x 32 pixels).
* GTK_ICON_SIZE_DIALOG icons in a dialog box (48 x 48 pixels).

3.3.3 Progress Bars

The example in Section 3.3.2 introduced the progress bar, a widget that informs the user how far along a
program is when it is busy at work. The progress bar class name is GtkProgress, and its type identifier is
GTK_TYPE_PROGRESS_BAR. Progress bar objects contain the following properties:

3.3.2 Images and GDK Pixbufs 125

The Official GNOME 2 Developer's Guide

« fraction (gdouble): The fraction of current progress; a floating—point number from 0 up to (but not
including) 1.

* pulse-step (gdouble): The fraction of the progress bar width that the indicator should move at every
pulse; applies to activity mode (discussed later).

« orientation (GtkProgressBarOrientation): The widget's orientation, including its direction of growth.
Possible values are

¢ GTK_PROGRESS LEFT_TO_RIGHT: Horizontal bar, growing left to right.

¢ GTK_PROGRESS RIGHT_TO_LEFT: Horizontal bar, growing right to left.

¢ GTK_PROGRESS BOTTOM_TO_TOP: Vertical bar, growing bottom to top.

¢ GTK_PROGRESS TOP_TO_BOTTOM: Vertical bar, growing top to bottom.
« text (gchararray): Text to overlay on top of the progress bar.

Note fraction should never be greater or equal to 1.0, unless you enjoy ugly warnings on the console. The
earlier example solves this problem with the CLAMP() macro.

In activity mode, the progress bar does not display text. After entering activity mode, you can advance the

indicator with

GtkProgressBar *progress_bar;

gtk_progress_bar_pulse(progress_bar);

Activity mode works for situations where the program can't figure out how long its current task will take. For
example, when traversing a directory tree, there is no terribly good way to tell how long the operation will
take. Therefore, you could advance the indicator every time the program runs through 100 files.

Set fraction to leave activity mode.

The example also shows that you can switch between normal and activity mode without a problem behavic
that you might know from certain web browsers. (Of course, many people find this behavior to be very
annoying.)

3.4 Container and Layout Widgets

It would be practically impossible to organize normal widgets without container widgets. Each container has
specific way of ordering its widgets based on parameters and packing order.

The principal container types are as follows:

» Horizontal and vertical boxes. These are the most important and fundamental containers. When you
need to arrange several widgets in a row or column, you should use a box. The two classes here are
GtkHBox for harizontal rows and GtkVBox for columns, both derived from the GtkBox parent
class. This book will refer to the objects from these classes as HBoxes and VBoxes.

There are special subclasses called GtkHButtonBox and GtkVButtonBox for groups of buttons.
They work like any other box, except that all widgets packed into one of these boxes tend to receive
consistent appearance and layout characteristics. Button boxes are good for buttons, as the name
implies, but they aren't terribly good for anything else.

3.4 Container and Layout Widgets 126

The Official GNOME 2 Developer's Guide

» Horizontal and vertical panes. A pane consists of two adjacent containers divided by a
user—adjustable slider bar. A typical use of the horizontal paned container (GtkHPaned) is a window
with a file manager in the primary pane and a list of items on the other side. A mail client could use a
vertical paned container (GtkVPaned) to separate the message list and display. The abstract
GtkPaned class is the parent of these two container classes.

Notebooks. These organizer widgets (GtkNotebook) hold several pages with tabs along one of the
edges for the user to select and view a page. Programs often use notebooks for property settings.

Note Notebooks with too many pages are a plague of modern GUI development. Try to keep these
things under control.

Tables. If you need to arrange several widgets in a grid, GtkTable is probably the best bet. Common

uses of table containers include matrices of nearidentical elements, such as a tic—tac-toe game or t

Nautilus file permissions dialog box; you can also make certain widgets in the table span cells over &

row and column. With the proper packing options, you can create good layouts for several kinds of

applications. Cell coordinates can change when you add or delete a widget from the table; if you're

doing this sort of thing, you probably want to get some help from Glade (see Chapter 5).

« Alignment. These simple containers (GtkAlignment) dictate the size and alignment of exactly one

widget.

You already saw some examples of HBoxes and VBoxes in earlier examples. The following program
demonstrates button boxes, panes, notebooks, and tables.

Notice that the widget declarations in the main program are grouped by container.

[* —*—coding: utf-8;—*- */
/* container.c —— container demo */

#include <gtk/gtk.h>

/* standard handlers */
gint delete_event(GtkWidget *widget, GdkEvent event, gpointer data)
{

return FALSE;

}

void end_program(GtkWidget *widget, gpointer data)
{

gtk_main_quit();
}

int main(int argc, char **argv)
{
GtkWindow *window;
GtkHPaned *h_pane;
GtkVPaned *v_pane;
GtkVButtonBox *button_column; /* button box elements */
GtkButton *button[3];

GtkTable *table; /* table elements */
GtkButton *tictac[3][3];

ginti, j;

GtkNotebook *notebook; /* notebook elements */

GtkLabel *page_1_content;

Gtklmage *page_2_apple;

GtkButton *page_3_button;

GtkLabel *page_1_title, *page_2_title, *page_3_title;

/* initialize GTK+, create a window, attach handlers */

3.4 Container and Layout Widgets 127

The Official GNOME 2 Developer's Guide

gtk_init(&argc, &argv);

window = g_object_new(GTK_TYPE_WINDOW,
"title", "Container Madness",
"default_height", 200,
"default_width", 300,
"border—width", 12,
NULL);

[* attach standard event handlers */
g_signal_connect(window, "delete_event", G_CALLBACK(delete_event), NULL);
g_signal_connect(window, "destroy", G_CALLBACK(end_program), NULL);

The program initially divides the main window into two panes with a horizontal pane widget that the user car
slide left and right.

[* Divide window horizontally with a pane */
h_pane = g_object_new(GTK_TYPE_HPANED, NULL);
gtk_container_add(GTK_CONTAINER(window), GTK_WIDGET(h_pane));

So far, there's been nothing terribly new about this application. Now let's put another widget (a vertical pane
container, to be specific) in the left pane created by the preceding code:

[* create a vertical paned container and put it

in the left side of the horizontal pane above */
v_pane = g_object_new(GTK_TYPE_VPANED, NULL);
gtk_paned_add1(GTK_PANED(h_pane), GTK_WIDGET(v_pane));

Notice that the packing function for paned containers here is gtk_paned_add1(), to put the widget into the le
pane. If this were a vertical paned container, it would put the widget into the top pane. Refer to Section 3.4.2
for more information on paned containers.

The next three statements create three buttons; there is nothing unusual about them.

[* create three buttons */

button[0] = g_object_new(GTK_TYPE_BUTTON, "label", "Foo", NULL);
button[1] = g_object_new(GTK_TYPE_BUTTON, "label", "Bar", NULL);
button[2] = g_object_new(GTK_TYPE_BUTTON, "label", "Baz", NULL);

A vertical button box holds the buttons. Because a button box is a form of GtkBox, the packing functions are
the same as for a regular box container_(see Section 3.4.1).

/* put the buttons in a vertical button box */
button_column = g_object_new(GTK_TYPE_VBUTTON_BOX, NULL);
for (i=0; i<3; i++)
{
gtk_box_pack_start_defaults(GTK_BOX(button_column), GTK_WIDGET (button([i]));

}

As the following comment indicates, this button box will go into the top pane of the vertically paned containe
(recall that this container is on the left side of the window).

[* put the vertical button box into the top pane of v_pane, from earlier */
gtk_paned_add1(GTK_PANED(v_pane), GTK_WIDGET (button_column));

The following code shows how to create a table container. Because the work of creating all of the widgets fc

3.4 Container and Layout Widgets 128

The Official GNOME 2 Developer's Guide

the table can be mundane, a short loop will create a button for each cell in the table. See Section 3.4.2 for a
description of a table container's properties and methods.

/* create a 3x3 table container */

table = g_object_new(GTK_TYPE_TABLE,
"n-rows", 3,
"n—columns", 3,
"homogeneous", TRUE,
NULL);

/* fill the table with some buttons */
for (i=0; i<3; i++)
{
for (j=0; j<3; j++)
{
tictac(i][j] = g_object_new(GTK_TYPE_BUTTON, NULL);
gtk_table_attach_defaults(table,
GTK_WIDGET tictac[i][j]),
i, i+1, j, j+1);
}
}
/* label the buttons in the table's diagonal */
g_object_set(tictac[0][0], "label", "Tic", NULL);
g_object_set(tictac[1][1], "label", "Tac", NULL);
g_object_set(tictac[2][2], "label", "Toe", NULL);

/* put the table in the lower pane of v_pane, from above */
gtk_paned_add2(GTK_PANED(v_pane), GTK_WIDGET(table));

The last container widget in this program is a notebook that occupies the right pane in the main window. The
first of three pages in the notebook contains a "Page 1!" label. The page needs a title to put on its tab; the fii
page's title is "This."

/* create a notebook */
notebook = g_object_new(GTK_TYPE_NOTEBOOK, NULL);

[* put the notebook in the window's right pane */
gtk_paned_add2(GTK_PANED(h_pane), GTK_WIDGET(hotebook));

[* create notebook's page 1, containing only a label */
page_1_content = g_object_new(GTK_TYPE_LABEL, "label", "Page 1!", NULL);

/* create page 1's title ("This") */
page_1_title = g_object_new(GTK_TYPE_LABEL, "label", "This", NULL);

/* add the page to the notebook */

gtk_notebook_append_page_menu(notebook,
GTK_WIDGET(page_1_content),
GTK_WIDGET(page_1_title),
NULL);

Section 3.4.4 describes notebook packing methods such as gtk_notebook append_page menu(), as well a
many properties that you can assign to notebooks.

The following fragment creates two more notebook pages: one with an image of an apple, and the other

containing a single button. After all of the notebook pages are in place, we're also ready to display the windc
and start the main event logp. Figure 3.7 shows the final application.

3.4 Container and Layout Widgets 129

The Official GNOME 2 Developer's Guide

w Container Madness —OX

Foo | This That |The Other|

...... ‘ y

J

Figure 3.7: Container demonstration.
/* add another page containing an apple image */
page_2_apple = g_object_new(GTK_TYPE_IMAGE, "file", "apple—-green.png”, NULL);
page_2_title = g_object_new(GTK_TYPE_LABEL, "label", "That", NULL);
gtk_notebook_append_page_menu(notebook,
GTK_WIDGET(page_2_apple),
GTK_WIDGET(page_2_title),
NULL);

/* page 3 contains a button */
page_3_button = g_object_new(GTK_TYPE_BUTTON, "label", "Click me", NULL);
page_3_title = g_object_new(GTK_TYPE_LABEL, "label", "The Other", NULL);
gtk_notebook _append_page_menu(notebook,

GTK_WIDGET(page_3_button),

GTK_WIDGET(page_3_title),

NULL);

/* show the whole thing and start GTK+ main loop */
gtk_widget_show_all(GTK_WIDGET(window));
gtk_main();

return O;

}

All container classes have GtkContainer as a superclass (class identifier: TK_TYPE_CONTAINER). You
have seen

gtk_container_add(container, widget)
from this class; all of the examples so far use it to pack a widget into the ain window.

Note Use gtk_container_add() only with simple containers such as GtkWindow and GtkFrame. The more
complex containers need more parameters and therefore have their own packing functions.

To remove a widget from a container, use

gtk_container_remove(container, widget)

Warning Taking a widget out of its container usually leads to the widget's destruction, because the container
held the only (previously floating) reference to the widget object. Obtain a new reference for the
widget object if you want to save it.

3.4 Container and Layout Widgets 130

The Official GNOME 2 Developer's Guide

The gtk_container_add_with_properties() function is a convenience function that allows you to place a widg
in a property like gtk_container_add(), but allows a NULL-terminated list of property and value pairs for the
widget (the syntax for the list is the same as for g_object_set()).

If you need to run the same function on many widgets at once, one particularly useful utility is

gtk_container_foreach(container, callback_function, data)

This runs the GtkCallback function callback function on all of the widgets inside container. The callback
takes a widget and data as its parameters; the type definition is as follows:

typedef void (*GtkCallback) (GtkWidget *widget, gpointer data);
All objects derived from the GtkContainer class have these two properties:

* border—width (gint): The border width of the container, in pixels. If this value is zero, packed
widgets extend to the very edge of the container.

« child (GtkWidget, write—only): Writing a widget to this property packs it into the container.
Therefore,

g_object_set(container, "child", widget, NULL)
is identical to

gtk_container_add(container, widget)

3.4.1 Boxes

Whether a horizontal box (GtkHBox, GTK_TYPE_HBOX) or a vertical box (GtkVBox,
GTK_TYPE_VBOX), all boxes has the same purpose: to arrange widgets in a line.

These two functions pack a widget into a box:

gtk_box_pack_start(box, widget, expand, fill, padding)
gtk_box_pack_end(box, widget, expand, fill, padding)

The parameters for both functions are

* box (GtkBox *): The container widget.

« widget (GtkWidget *): The widget to pack into box.

» expand (gboolean): Indicates whether the widget should try to center itself over any remaining free
space in the box. This does not have any effect on the widget's size (see fill, described next). The bc
divides its free space among the widgets packed with this parameter set to TRUE.

« fill (gboolean): When TRUE, the widget actually grows to cover the free space, rather than float over
it. This will not work unless you set expand to TRUE.
« padding (guint): The pixel count of free space to keep on each side of the widget.

The gtk_box_pack_start() function packs a widget at the front of the box. All widgets previously packed into

the box with this function still appear in front of any new widget. gtk_box_pack_end() is a similar function for
packing at the end of acontainer.

3.4.1 Boxes 131

The Official GNOME 2 Developer's Guide

Noteln a VBox, the start of the container is the top. In an HBox, it's usually the left side, but don't always
assume this. If a user's locale sets a language where the writing goes from right to left, the horizontal
widgets are likely to be reversed.

If you don't feel like typing all of the parameters for these two packing functions all of the time, use these twt
functions:

gtk_box_pack_start_defaults(box, widget)
gtk_box_pack_end_defaults(box, widget)

These are like their counterparts described earlier, but set fill and expand to TRUE, and padding to O.
The GtkBox class has two properties:

« spacing (gint): The distance between packed widgets (in pixels). Keep in mind that this is in addition
to any padding that you add when packing the widgets.
« homogeneous (ghoolean): If TRUE, widgets inside the box become (and stay) the exact same size.

The button box classes (GtkHButtonBox and GtkVButtonBox, class type identifiers
GTK_TYPE_HBUTTON_BOX and GTK_TYPE_VBUTTON_BOX) have the same methods and properties
as normal boxes. There is one additional GtkButtonBox property that gives you finer control of how the box
arranges the buttons: layout-style. Its value is one of the following:

« GTK_BUTTONBOX_ DEFAULT_STYLE: The default layout; like a regular box.

« GTK_BUTTONBOX_SPREAD: The box spreads the buttons across its space at equal intervals.
There is a half-interval at each end.

« GTK_BUTTONBOX_EDGE: Like the preceding, but with no space at each end.

« GTK_BUTTONBOX_START: The box groups the buttons at the beginning of its space.

« GTK_BUTTONBOX_END: The box groups the buttons at the end of its space.

Container Child Properties

When you pack a widget into a GtkBox container, the widget obtains some child properties that control how
it appears in the box. However, these are not regular GObject properties; you need to use special functions
retrieve and set the values.

The child property access functions rely on the GValue system (see Section 2.4.2):

void gtk_container_child_get_property (GtkContainer *container,
GtkWidget *child,
const gchar *property_name,
GValue *value);

void gtk_container_child_set_property (GtkContainer *container,
GtkWidget *child,
const gchar *property_name,
const GValue *value);

The preceding child property functions require that value be an allocated and injtialized GValue. This
example with the padding child property should give you the idea:

GValue *value;

3.4.1 Boxes 132

The Official GNOME 2 Developer's Guide

/* initialize value */
gv = g_new0(GValue, 1);
g_value_init(gv, G_TYPE_INT);

/* get current child property padding value */
gtk_container_child_get_property(container, widget, "padding", gv);

/* set padding value to a ludicrous value */
g_value_set_int(gv, 100);
gtk_container_child_set_property(container, widget, "padding", gv);

g_free(value);
Here are the GtkBox child properties:

» expand (gboolean): See the expand parameter described earlier.

« fill (gboolean): See the fill parameter described earlier.

« padding (guint): See the padding parameter described earlier.

 pack-type (GtkPackType): The side where the widget was packed; possible values are
GTK_PACK_START and GTK_PACK_END.

« position (gint): The position of the widget in the box (positions start at 0).

A child of a GtkButtonBox widget receives an additional secondary child property (type: gboolean). When
TRUE, the widget appears at the other side of the button box. Help buttons and the like often get this
treatment.

3.4.2 Tables

An object of the GtkTable class is essentially a bounded two—dimensional box. The example in Section 3.4
showed that tables have n—-rows and n—columns properties for the number of rows and columns in the table

After you create a table, you can use it as a container. Naturally, it's not a good idea to arbitrarily pack widge
into the table. You can assign a widget to a specific table cell, and you can also tell it to span rows and
columns. The function for inserting a widget into a table is

gtk_table_attach(table, widget,
left_attach, right_attach,
top_attach, bottom_attach,
xoptions, yoptions,
xpadding, ypadding)

The arguments are as follows:

« table (GtkTable *): The target GtkTable widget.

 widget (GtkW